Production Traits, Blood Metabolic Profile, and Antioxidative Status of Dairy Goats Fed a Red Corn Supplemented Feed Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feedstuff Analysis and Nutrition
2.3. Milk Sampling and Analysis
2.3.1. Antioxidant Indicators
2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
Thiobarbituric Acid Reactive Substances (TBARS450)
2.4. Blood Sampling and Analysis of Blood Metabolic Profile
2.5. Statistical Analyses
- μ = overall mean,
- di = fixed effect of diet (i = CC, RC50, RC100),
- hij = animal within diet as subject (j = CC, RC540, RC100),
- wk = fixed effect of period during lactation (k = 1–3),
- dwik = interaction between diet and period (diet × period), and
- eijk = random error variation (residual error).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutinati, M.; Piccinno, M.; Roncetti, M.; Campanile, D.; Rizzo, A.; Sciorsci, R.L. Oxidative stress during pregnancy in the sheep. Reprod. Domest. Anim. 2013, 48, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Celi, P.; Ponnampalam, E.; Dunshea, F.R. Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: Role of vitamin E and selenium. Anim. Prod. Sci. 2014, 54, 1525–1536. [Google Scholar] [CrossRef]
- Castillo, C.; Pereira, V.; Abuelo, A.; Hernández, J. Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. 2013, 2013, 616098. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.; Sinza, S.; Messadene-Chelalib, J.; Marquardt, S. Maternal and direct dietary polyphenol supplementation affect growth, carcass and meat quality of sheep and goats. Animal 2021, 15, 100333. [Google Scholar] [CrossRef] [PubMed]
- Quadros, D.G.; Kerth, C.R.; Miller, R.; Tolleson, D.R.; Redden, R.R.; Xu, W. Intake, growth performance, carcass traits, and meat quality of feedlot lambs fed novel anthocyanin-rich corn cobs. Transl. Anim. Sci. 2023, 7, txac171. [Google Scholar] [CrossRef] [PubMed]
- Ávila, M.; Hidalgo, M.; Sánchez-Moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 2009, 42, 1453–1461. [Google Scholar] [CrossRef]
- Sheng, S.; Li, T.; Liu, R.H. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar]
- Kumari, P.; Raju, D.V.S.; Prasad, K.V.; Saha, S.; Panwar, S.; Paul, S.; Banyal, N.; Bains, A.; Chawla, P.; Fogarasi, M. Characterization of Anthocyanins and Their Antioxidant Activities in Indian Rose Varieties (Rosa × hybrida) Using HPLC. Antioxidants 2022, 11, 2032. [Google Scholar] [CrossRef]
- Logo, C.; Cassani, E.; Petroni, K.; Calvenzani, V.; Tonelli, C.; Pilu, R. Study of maize genotypes rich in antocyanins for human and animal nutrition. In Proceeding of the Joint Meeting AGI-SIBV-SIGA, Assisi, Italy, 19–22 September 2011; p. 42. [Google Scholar]
- Changxing, L.; Chenling, M.; Alagawany, M.; Jinhua, L.; Dongfand, D.; Gaichao, W.; Wenyin, Z.; Syed, S.F.; Arain, M.A.; Saeed, M.; et al. Health benefits and potential applications of anthocyanins in poultry feed industry. Worldȉs Poult. Sci. J. 2018, 74, 251–263. [Google Scholar] [CrossRef]
- Antunović, Z.; Novoselec, J.; Klir Šalavardić, Ž.; Steiner, Z.; Šperanda, M.; Jakobek Barron, L.; Ronta, M.; Pavić, V. Influence of red corn rich in anthocyanins on productive traits, blood metabolic profile, and antioxidative status of fattening lambs. Animals 2022, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Sorasak, T. Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. J. Dairy Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Santucci, P.M.; Maestrini, O. Body condition of dairy goats in extensive systems of production: Method of estimation. J. Dairy Sci. 1985, 34, 471–490. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academy Press: Washington, DC, USA, 2007; p. 293. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Arlington, VA, USA, 2006. [Google Scholar]
- Jakobek, L.; Matić, P.; Ištuk, J.; Barron, A.R. Study of Interactions Between Individual Phenolics of Aronia with Barley β-Glucan. Pol. J. Food Nutr. Sci. 2021, 71, 187–196. [Google Scholar] [CrossRef]
- HRN ISO 9622:2017; Milk and Liquid Milk Products—Guidelines for the Application of Mid-Infrared Spectrometry. Croatian Standards Institute: Zagreb, Croatia, 2017.
- HRN ISO 13366-2/Ispr.1:2007 (ISO 13366-2:2006); Milk-Enumeration of Somatic Cells-Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters. Croatian Standards Institute: Zagreb, Croatia, 2007.
- Alyaqoubi, S.; Abdullah, A.; Addai, Z.R. Antioxidant activity of goat’s milk from three different locations in Malaysia. In Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium, Selangor, Malaysia, 9–11 April 2014; Volume 1614, pp. 198–201. [Google Scholar]
- Qwele, K.; Hugo, A.; Oyedemi, S.O.; Moyo, B.; Masika, P.J.; Muchenje, V. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay. Meat Sci. 2013, 93, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.-G.; Untea, A.E.; Dragomir, C.; Radu, G.L. Determination of Optimum TBARS Conditions for Evaluation of Cow and Sheep Milk Oxidative Stability. Appl. Sci. 2022, 12, 6508. [Google Scholar] [CrossRef]
- Sun, Q.; Faustman, C.; Senecal, A.; Wilkinson, A.L.; Furr, H. Aldehyde reactivity with 2-thiobarbituric acid and TBARS in freeze-dried beef during accelerated storage. Meat Sci. 2001, 57, 55–60. [Google Scholar] [CrossRef]
- SAS 9.4 Copyright (c) 2002–2012; SAS Institute Inc.: Cary, NC, USA, 2013.
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Review. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Zhou, D.; Long, Q.M.; Wang, X.; Lu, Q.; Wen, G.L. Effects of Purple Corn Anthocyanin on Blood Biochemical Indexes, Ruminal Fluid Fermentation, and Rumen Microbiota in Goats. Front. Vet. Sci. 2021, 8, 715710. [Google Scholar] [CrossRef]
- Suong, N.T.M.; Paengkoum, S.; Schonewille, J.T.; Purba, R.A.P.; Paengkoum, P. Growth Performance, Blood Biochemical Indices, Rumen Bacterial Community, and Carcass Characteristics in Goats Fed Anthocyanin-Rich Black Cane Silage. Front. Vet. Sci. 2022, 9, 880838. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Lu, Q.; Zhao, S.; Li, J.; Luo, Q.; Wang, X.; Zhang, J.; Zheng, N. Purple corn anthocyanin affects lipid mechanism, flavor compound profiles, and related gene expression of Longissimus Thoracis et Lumborum muscle in goats. Animals 2021, 11, 2407. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, K.; Miyaji, M.; Matsuyama, H.; Haga, S.; Ishizaki, H.; Nonaka, K. Effect of supplementation of purple pigment from anthocyanin-rich corn (Zea mays L.) on blood antioxidant activity and oxidation resistance in sheep. Livest. Sci. 2012, 145, 266–270. [Google Scholar] [CrossRef]
- Tian, X.Z.; Xin, H.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, T.; Kubozono, H.; Saegusa, A.; Obata, K.; Gotoh, K.; Miki, K.; Akiyama, T.; Oba, M. Effect of feeding purple corn (Zea mays L.) silage on productivity and blood superoxide dismutase concentration in lactating cows. J. Dairy Sci. 2019, 102, 7179–7182. [Google Scholar] [CrossRef]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Silage fermentative quality and characteristics of anthocyanin stability in anthocyanin-rich corn (Zea mays L.). Asian-Australas. J. Anim. Sci. 2009, 22, 528–533. [Google Scholar] [CrossRef]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. Anim. Sci. J. 2011, 83, 453–459. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muǹoz, A.M.; Alvarado-Ortíz, C.; Alvarado, Á.; Yáǹez, J.A. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food 2012, 15, 704–713. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2008; p. 963. [Google Scholar]
- Antunović, Z.; Novoselec, J.; Klir, Ž.; Đidara, M. Hematological parameters in the Alpine goats during lactation. Poljoprivreda 2013, 19, 40–43. [Google Scholar]
- Antunović, Z.; Marić, I.; Klir, Ž.; Šerić, V.; Mioč, B.; Novoselec, J. Haemato-biochemical profile and acid-base status of Croatian spotted goats of different ages. Arch. Anim. Breed. 2019, 62, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods 2020, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Youdim, K.A.; Shukitt-Hale, B.; MacKinnon, S.; Kalt, W.; Joseph, J.A. Polyphenolics enhance red blood cell resistance to oxidative stress: In vitro and in vivo. Biochim. Biophys. Acta 2000, 1523, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; Lopez-Lazaro, M.A. A Review on the Dietary Flavonoid Kaempferol. Mini-Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Osawa, T. Dietary cyanidin 3-O-D-glucoside increases ex vivo oxidation resistance of serum in rats. Lipids 1998, 33, 583–588. [Google Scholar] [CrossRef]
Chemical Content (g/kg DM) | Feed Mixture | Yellow Corn | Red Corn | Hay |
---|---|---|---|---|
DM | 912 | 905 | 907 | 932 |
Crude protein | 157 | 100 | 105 | 91 |
Crude fiber (g/kg DM) | 36 | 25 | 23 | 328 |
Crude ash (g/kg DM) | 30 | 13 | 14 | 67 |
EE (g/kg DM) | 51 | 38 | 37 | 8 |
ME (MJ/kg DM) | 12 | - | - | 7 |
Polyphenols * (total), mg/kg | 144.77 | 179.87 | 298.69 | - |
Anthocyanins ** (total), mg/kg | 0 | 125.37 | 253.04 | - |
Traits | Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CC | RC50 | RC100 | D | T | D*T | ||
Morning milk yield (g) | 1461.47 | 1323.54 | 1367.18 | 54.176 | 0.555 | 0.443 | 0.779 |
Body weight (kg) | 46.10 | 48.22 | 47.83 | 0.712 | 0.465 | 0.991 | 0.993 |
BCS (point) | 2.76 | 2.90 | 2.80 | 0.051 | 0.577 | 0.687 | 0.856 |
Milk composition | |||||||
Fat (g/100 g) | 3.14 | 3.22 | 3.09 | 0.083 | 0.840 | 0.939 | 0.980 |
Protein (g/100 g) | 2.84 | 2.89 | 3.00 | 0.029 | 0.086 | 0.569 | 0.995 |
Lactose (g/100 g) | 4.45 | 4.48 | 4.53 | 0.022 | 0.800 | 0.285 | 0.335 |
NFDM (g/100 g) | 8.34 | 8.43 | 8.58 | 0.042 | 0.101 | 0.650 | 0.688 |
AST (U/L) | 171.29 | 130.43 | 145.66 | 11.812 | 0.415 | 0.734 | 0.614 |
ALT (U/L) | 386.68 | 346.95 | 352.00 | 46.341 | 0.904 | 0.460 | 0.784 |
GGT (U/L) | 364.92 | 360.19 | 327.88 | 15.362 | 0.584 | 0.766 | 0.446 |
Fe (μmol/L) | 17.21 | 15.79 | 13.76 | 1.261 | 0.603 | 0.774 | 0.769 |
Ca (mmol/L) | 41.03 | 45.30 | 45.84 | 1.673 | 0.417 | 0.081 | 0.484 |
P-inorg (mmol/L) | 28.47 | 32.63 | 33.96 | 1.200 | 0.154 | 0.172 | 0.435 |
Urea (mg/dL) | 19.88 | 22.51 | 23.06 | 0.257 | 0.572 | 0.032 | 0.911 |
SSC (log) | 5.43 | 5.51 | 5.37 | 0.049 | 0.645 | 0.940 | 0.562 |
Parameter | Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CC | RC50 | RC100 | D | T | D*T | ||
RBC (×1012 L) | 9.74 ab | 10.45 a | 8.71 b | 0.228 | 0.015 | 0.180 | 0.843 |
WBC (×109 L) | 9.74 | 8.99 | 9.74 | 0.350 | 0.313 | 0.382 | 0.901 |
HGB (g/L) | 84.43 b | 100.00 a | 106.55 a | 5.212 | <0.001 | <0.001 | <0.001 |
HCT (L/L) | 0.27 | 0.28 | 0.26 | 0.006 | 0.169 | 0.015 | 0.728 |
MCH (pg) | 7.98 c | 9.70 b | 12.54 a | 0.661 | <0.001 | <0.001 | <0.001 |
MCV (fL) | 27.24 | 27.25 | 30.54 | 0.992 | 0.300 | 0.207 | 0.474 |
MCHC (g/L) | 293.57 c | 357.50 b | 462.78 a | 18.755 | <0.001 | <0.001 | <0.001 |
Parameter | Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CC | RC50 | RC100 | D | T | D*T | ||
Urea (mmol/L) | 7.58 | 7.92 | 7.44 | 0.220 | 0.626 | <0.001 | 0.488 |
TPROT (g/L) | 74.74 | 77.13 | 73.71 | 0.867 | 0.295 | 0.788 | 0.505 |
ALB (g/L) | 27.56 | 27.83 | 26.46 | 0.439 | 0.442 | 0.760 | 0.541 |
GLOB (g/L) | 47.18 | 49.30 | 47.25 | 0.616 | 0.314 | 0.454 | 0.741 |
Ca (mmol/L) | 2.31 | 2.29 | 2.24 | 0.024 | 0.463 | 0.097 | 0.720 |
P-inorganic (mmol/L) | 2.25 | 2.11 | 2.20 | 0.065 | 0.696 | 0.975 | 0.375 |
Mg (mmol/L) | 1.30 | 1.30 | 1.29 | 0.011 | 0.960 | 0.009 | 0.273 |
Fe (μmol/L) | 25.57 | 24.90 | 24.33 | 0.950 | 0.869 | 0.489 | 0.314 |
GUK (mmol/L) | 3.55 | 3.49 | 3.60 | 0.045 | 0.636 | 0.031 | 0.803 |
CHOL (mmol/L) | 2.74 | 3.09 | 2.67 | 0.080 | 0.099 | 0.656 | 0.801 |
HDL (mmol/L) | 1.64 | 1.83 | 1.63 | 0.044 | 0.143 | 0.907 | 0.891 |
LDL (mmol/L) | 1.03 | 1.18 | 0.95 | 0.041 | 0.098 | 0.316 | 0.736 |
TGC (mmol/L) | 0.17 | 0.18 | 0.19 | 0.011 | 0.734 | 0.235 | 0.921 |
NEFA (mmol/L) | 0.11 | 0.14 | 0.10 | 0.009 | 0.311 | 0.157 | 0.863 |
BHB (mmol/L) | 0.71 | 0.67 | 0.57 | 0.024 | 0.071 | 0.562 | 0.766 |
AST (U/L) | 130.53 | 121.43 | 137.93 | 3.423 | 0.187 | 0.512 | 0.914 |
ALT (U/L) | 27.71 | 24.59 | 27.54 | 0.679 | 0.136 | 0.326 | 0.878 |
GGT (U/L) | 45.29 | 43.92 | 43.44 | 1.027 | 0.753 | 0.681 | 0.506 |
Parameter | Diets | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CC | RC50 | RC100 | D | T | D*T | ||
Milk | |||||||
TBARS450 | 0.025 a | 0.022 ab | 0.019 b | 0.017 | 0.022 | <0.001 | 0.186 |
DPPH scavenging (%) | 87.78 | 91.17 | 92.54 | 1.107 | 0.187 | 0.099 | 0.324 |
SODm (U/mL) | 10.37 | 11.45 | 11.63 | 0.668 | 0.735 | 0.532 | 0.616 |
Blood serum | |||||||
GPx (U/L) | 1633.48 | 1669.75 | 1531.92 | 99.589 | 0.726 | <0.001 | 0.043 |
SODb (U/mL) | 0.29 b | 0.53 a | 0.44 a | 0.025 | 0.001 | 0.356 | 0.916 |
GR (U/L) | 96.16 | 95.36 | 95.06 | 2.561 | 0.990 | 0.003 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunović, Z.; Klir Šalavardić, Ž.; Novoselec, J.; Steiner, Z.; Đidara, M.; Pavić, V.; Jakobek Barron, L.; Ronta, M.; Mioč, B. Production Traits, Blood Metabolic Profile, and Antioxidative Status of Dairy Goats Fed a Red Corn Supplemented Feed Mixture. Agriculture 2024, 14, 82. https://doi.org/10.3390/agriculture14010082
Antunović Z, Klir Šalavardić Ž, Novoselec J, Steiner Z, Đidara M, Pavić V, Jakobek Barron L, Ronta M, Mioč B. Production Traits, Blood Metabolic Profile, and Antioxidative Status of Dairy Goats Fed a Red Corn Supplemented Feed Mixture. Agriculture. 2024; 14(1):82. https://doi.org/10.3390/agriculture14010082
Chicago/Turabian StyleAntunović, Zvonko, Željka Klir Šalavardić, Josip Novoselec, Zvonimir Steiner, Mislav Đidara, Valentina Pavić, Lidija Jakobek Barron, Mario Ronta, and Boro Mioč. 2024. "Production Traits, Blood Metabolic Profile, and Antioxidative Status of Dairy Goats Fed a Red Corn Supplemented Feed Mixture" Agriculture 14, no. 1: 82. https://doi.org/10.3390/agriculture14010082
APA StyleAntunović, Z., Klir Šalavardić, Ž., Novoselec, J., Steiner, Z., Đidara, M., Pavić, V., Jakobek Barron, L., Ronta, M., & Mioč, B. (2024). Production Traits, Blood Metabolic Profile, and Antioxidative Status of Dairy Goats Fed a Red Corn Supplemented Feed Mixture. Agriculture, 14(1), 82. https://doi.org/10.3390/agriculture14010082