Molecular Genetic Insights into the Stress Responses and Cultivation Management of Zoysiagrass: Illuminating the Pathways for Turf Improvement
Abstract
:1. Introduction
2. Molecular and Genetic Approaches in Zoysiagrass Investigation
2.1. Genomics Approaches
2.2. Transcriptomics Approaches
2.3. Proteomics Approaches
2.4. Functional Validation Approaches
3. Current State of Research on Abiotic and Biotic Stress in Zoysiagrass
3.1. Cold Stress
3.2. Salt Stress
3.3. Drought Stress
3.4. Wound Stress
3.5. Pathogen Disease
3.6. Insect Pests
3.7. Senescence
4. Research on Cultivation Management of Zoysiagrass
4.1. Herbicide Selection
4.2. Growth Control
4.3. Propagation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Shao, A.; Xu, X.; Fan, S.; Fu, J. Comparative genomics reveals the molecular mechanism of salt adaptation for zoysiagrasses. BMC Plant Biol. 2022, 22, 355. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y.; Zhang, B.; Li, D.; Chen, J.; Zong, J.; Li, J.; Liu, J.; Jiang, Y. Association of candidate genes with drought tolerance traits in zoysiagrass germplasm. J. Plant Physiol. 2019, 237, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Yan, F.; Yang, L.; Sun, Z.; Wei, S. Responses of Manila Grass (Zoysia matrella) to chilling stress: From transcriptomics to physiology. PLoS ONE 2020, 15, e0235972. [Google Scholar] [CrossRef] [PubMed]
- Obasa, K.; Fry, J.; Kennelly, M. Susceptibility of zoysiagrass germplasm to large patch caused by Rhizoctonia solani. Hortic. Sci. 2012, 47, 1252–1256. [Google Scholar] [CrossRef]
- Anderson, W.F.; Snook, M.E.; Johnson, A.W. Flavonoids of zoysiagrass (Zoysia spp.) cultivars varying in fall armyworm (Spodoptera frugiperda) resistance. J. Agric. Food Chem. 2007, 55, 1853–1861. [Google Scholar] [CrossRef]
- Wang, J.; An, C.; Guo, H.; Yang, X.; Chen, J.; Zong, J.; Li, J.; Liu, J. Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud. BMC Plant Biol. 2020, 20, 114. [Google Scholar] [CrossRef]
- Ming, Q.; Wang, K.; Wang, J.; Liu, J.; Li, X.; Wei, P.; Guo, H.; Chen, J.; Zong, J. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. Front. Plant Sci. 2022, 13, 970651. [Google Scholar] [CrossRef]
- Yamada, T.; Bork, P. Evolution of biomolecular networks—Lessons from metabolic and protein interactions. Nat. Rev. Mol. Cell Biol. 2009, 10, 791–803. [Google Scholar] [CrossRef]
- Chandra, A.; Milla-Lewis, S.; Yu, Q.Y. An overview of molecular advances in Zoysiagrass. Crop Sci. 2017, 57, 73–81. [Google Scholar] [CrossRef]
- Egan, A.N.; Schlueter, J.; Spooner, D.M. Applications of next-generation sequencing in plant biology. Am. J. Bot. 2012, 99, 175–185. [Google Scholar] [CrossRef]
- Ray, S.; Satya, P. Next generation sequencing technologies for next generation plant breeding. Front. Plant Sci. 2014, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Kim, J.-S.; Kim, S.; Soh, H.Y.; Shin, H.; Jang, H.; Ryu, J.H.; Kim, A.; Yun, K.-Y.; Kim, S. De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in zoysiagrass (Zoysia japonica Steud.). PLoS ONE 2015, 10, e0124497. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Niu, J.; Xu, X.; Xu, L.; Zhang, Y.; Fan, B.; Liang, X.; Zhang, L.; Yin, S.; Han, L. De novo assembly of the Japanese lawngrass (Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. Front. Plant Sci. 2015, 6, 610. [Google Scholar]
- Guan, J.; Yin, S.; Yue, Y.; Liu, L.; Guo, Y.; Zhang, H.; Fan, X.; Teng, K. Single-molecule long-read sequencing analysis improves genome annotation and sheds new light on the transcripts and splice isoforms of Zoysia japonica. BMC Plant Biol. 2022, 22, 263. [Google Scholar] [CrossRef] [PubMed]
- Holloway HM, P.; Yu, X.; Dunne, J.C.; Schwartz, B.M.; Patton, A.J.; Arellano, C.; Milla-Lewis, S.R. A SNP-based high-density linkage map of zoysiagrass (Zoysia japonica Steud.) and its use for the identification of QTL associated with winter hardiness. Mol. Breed. 2017, 38, 10. [Google Scholar] [CrossRef]
- Tanaka, H.; Hirakawa, H.; Kosugi, S.; Nakayama, S.; Ono, A.; Watanabe, A.; Hashiguchi, M.; Gondo, T.; Ishigaki, G.; Muguerza, M.; et al. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Res. 2016, 23, 171–180. [Google Scholar] [CrossRef]
- Yang, D.-H.; Jeong, O.-C.; Sun, H.-J.; Kang, H.-G.; Lee, H.-Y. Genome analysis of Zoysia japonica ‘Yaji’cultivar using PacBio long-read sequencing. Plant Biotechnol. Rep. 2023, 17, 275–283. [Google Scholar] [CrossRef]
- Huang, X.; Wang, F.; Singh, R.; Reinert, J.A.; Engelke, M.C.; Genovesi, A.D.; Chandra, A.; Yu, Q. Construction of high-resolution genetic maps of Zoysia matrella (L.) Merrill and applications to comparative genomic analysis and QTL mapping of resistance to fall armyworm. BMC Genom. 2016, 17, 562. [Google Scholar] [CrossRef]
- Wang, F.; Singh, R.; Genovesi, A.D.; Wai, C.M.; Huang, X.; Chandra, A.; Yu, Q. Sequence-tagged high-density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae. Plant J. 2015, 82, 744–757. [Google Scholar] [CrossRef]
- Guo, H.; Ding, W.; Chen, J.; Chen, X.; Zheng, Y.; Wang, Z.; Liu, J. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica). PLoS ONE 2014, 9, e107249. [Google Scholar] [CrossRef]
- Tyagi, P.; Singh, D.; Mathur, S.; Singh, A.; Ranjan, R. Upcoming progress of transcriptomics studies on plants: An overview. Front. Plant Sci. 2022, 13, 1030890. [Google Scholar] [CrossRef] [PubMed]
- Imadi, S.R.; Kazi, A.G.; Ahanger, M.A.; Gucel, S.; Ahmad, P. Plant transcriptomics and responses to environmental stress: An overview. J. Genet. 2015, 94, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Weldt, C.E.; Holloway, H.M.P.; Tuong, T.D.; Patton, A.J.; DaCosta, M.; Livingston, D.P.; Yu, X.W.; Milla-Lewis, S.R. Transcriptomic analysis of zoysiagrass (Zoysia japonica) provides novel insights into the molecular basis of cold acclimation. Grass Res. 2023, 3, 25. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Liu, K.; Zhang, X.J.; Zhang, L.Y.; Fan, S.J. Comparative transcriptome analysis of halophyte Zoysia macrostachya in response to salinity stress. Plants 2020, 9, 458. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Zhang, Z.; Han, L.; Xu, L. The effect of ethephon on ethylene and chlorophyll in Zoysia japonica leaves. Int. J. Mol. Sci. 2024, 25, 1663. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Liu, W.; Li, L.; Han, L.; Xu, L.; Zhao, Y. Transcriptome analysis revealed a positive role of Ethephon on chlorophyll metabolism of Zoysia japonica under cold stress. Plants 2022, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Doan, P.P.T.; Chuong, N.N.; Lee, H.Y.; Kim, J.H.; Kim, J. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. Front. Plant Sci. 2023, 14, 1170808. [Google Scholar] [CrossRef]
- Guan, J.; Fan, X.; Yue, Y.; Xu, L.; Teng, K.; Yin, S. Integrative transcriptome and chlorophyll fluorescence test analysis shed new light on the leaf senescence mechanism of Zoysia japonica. Agronomy 2023, 13, 623. [Google Scholar] [CrossRef]
- Zhu, C.; Ai, L.; Wang, L.; Yin, P.; Liu, C.; Li, S.; Zeng, H. De novo transcriptome analysis of Rhizoctonia solani AG1 IA strain early invasion in Zoysia japonica root. Front. Microbiol. 2016, 7, 708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, J.; Wei, K.; Jia, S.; Jiang, Y.; Cai, H.; Mao, P.; Li, M. Physiological and molecular responses of Zoysia japonica to rust infection. Int. J. Mol. Sci. 2022, 23, 4185. [Google Scholar] [CrossRef]
- Wei, S.; Du, Z.; Gao, F.; Ke, X.; Li, J.; Liu, J.; Zhou, Y. Global transcriptome profiles of ‘Meyer’ Zoysiagrass in response to cold stress. PLoS ONE 2015, 10, e0131153. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.H.; He, L.L.; Wang, C.C.; Liang, C.; Li, H.Y.; Zhong, D.W.; Dong, Z.X.; Zhang, L.J.; Zhang, X.Q.; Ge, L.F. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1. 0, a high-quality reference transcript dataset. Physiol. Plant. 2024, 176, e14280. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Woo, H.R.; Nam, H.G. Toward systems understanding of leaf senescence: An integrated multi-omics perspective on leaf senescence research. Mol. Plant 2016, 9, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Kosova, K.; Vitamvas, P.; Urban, M.O.; Prasil, I.T.; Renaut, J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef]
- Xuan, J.; Song, Y.; Zhang, H.; Liu, J.; Guo, Z.; Hua, Y. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS ONE 2013, 8, e75705. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Yu, X.; Holloway, H.M.P.; DaCosta, M.; Bernstein, R.P.; Lu, J.; Tuong, T.D.; Patton, A.J.; Dunne, J.C.; Arellano, C. Differences in proteome response to cold acclimation in Zoysia japonica cultivars with different levels of freeze tolerance. Crop Sci. 2020, 60, 2744–2756. [Google Scholar] [CrossRef]
- Ren, R.; Gao, J.; Yin, D.; Li, K.; Lu, C.; Ahmad, S.; Wei, Y.; Jin, J.; Zhu, G.; Yang, F. Highly efficient leaf base protoplast isolation and transient expression systems for orchids and other important monocot crops. Front. Plant Sci. 2021, 12, 626015. [Google Scholar] [CrossRef]
- Burman, N.; Chandran, D.; Khurana, J.P. A rapid and highly efficient method for transient gene expression in rice plants. Front. Plant Sci. 2020, 11, 584011. [Google Scholar] [CrossRef]
- Inokuma, C.; Sugiura, K.; Imaizumi, N.; Cho, C. Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Rep. 1998, 17, 334–338. [Google Scholar] [CrossRef]
- Inokuma, C.; Sugiura, K.; Cho, C.; Okawara, R.; Kaneko, S. Plant regeneration from protoplasts of Japanese lawngrass. Plant Cell Rep. 1996, 15, 737–741. [Google Scholar] [CrossRef]
- Kim, J.H.; Doan, P.P.T.; Lee, H.Y.; Kim, J. Transient gene expression system in Zoysiagrass leaf mesophyll protoplasts. Plant Biotechnol. Rep. 2022, 16, 113–121. [Google Scholar] [CrossRef]
- Muguerza, M.B.; Gondo, T.; Ishigaki, G.; Shimamoto, Y.; Umami, N.; Nitthaisong, P.; Rahman, M.M.; Akashi, R. Tissue culture and somatic embryogenesis in warm-season grasses-current status and its applications: A review. Plants 2022, 11, 1263. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, D.; Zhang, L.; Yang, C. Agrobacterium-mediated transformation of Japanese lawngrass (Zoysia japonica Steud.) containing a synthetic cryIA(b) gene from Bacillus thuringiensis. Plant Breed. 2007, 126, 428–432. [Google Scholar] [CrossRef]
- Toyama, K.; Bae, C.H.; Kang, J.G.; Lim, Y.P.; Adachi, T.; Riu, K.Z.; Song, P.S.; Lee, H.Y. Production of herbicide-tolerant Zoysiagrass by Agrobacterium-mediated transformation. Mol. Cells 2003, 16, 19–27. [Google Scholar] [CrossRef]
- Ge, Y.; Norton, T.; Wang, Z.Y. Transgenic Zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep. 2006, 25, 792–798. [Google Scholar] [CrossRef]
- Li, R.F.; Wei, J.H.; Wang, H.Z.; He, J.; Sun, Z.Y. Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell Tiss. Organ. Cult. 2006, 85, 297–305. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Hu, X.; Pan, X.; Wu, G. An Agrobacterium tumefaciens-mediated transformation system using callus of Zoysia tenuifolia Willd. ex Trin. Plant Cell Tiss. Organ. Cult. 2010, 102, 321–327. [Google Scholar] [CrossRef]
- Ng, H.M.; Gondo, T.; Ushiyama, M.; Cho, S.; Maemura, S.; Hashiguchi, M.; Tanaka, H.; Akashi, R. Agrobacterium-mediated transformation via establishment of stable tissue culture system in Zoysia matrella (L.) Merrill ‘Wakaba’. Gr. Sci. 2023, 69, 152–161. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, M.Y.; Wang, L.; Doan, P.P.T.; Yuan, Y.; Lee, H.Y.; Kim, J. Efficient CRISPR/Cas9-mediated gene editing of the ZjEIN2 gene in Zoysia japonica. Plant Biotechnol. Rep. 2024, 18, 253–262. [Google Scholar] [CrossRef]
- Ng, H.M.; Gondo, T.; Tanaka, H.; Akashi, R. CRISPR/Cas9-mediated knockout of NYC1 gene enhances chlorophyll retention and reduces tillering in Zoysia matrella (L.) Merrill. Plant Cell Rep. 2024, 43, 50. [Google Scholar] [CrossRef]
- Zuo, Z.F.; Kang, H.G.; Park, M.Y.; Jeong, H.; Sun, H.J.; Song, P.S.; Lee, H.Y. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. Plant Sci. 2019, 289, 110254. [Google Scholar] [CrossRef]
- Zuo, Z.F.; Kang, H.G.; Hong, Q.C.; Park, M.Y.; Sun, H.J.; Kim, J.; Song, P.S.; Lee, H.Y. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Plant Mol. Biol. 2020, 102, 447–462. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yang, D.H.; Park, M.Y.; Sun, H.J.; Song, P.S.; Kang, H.G.; Suh, S.C.; Lee, Y.E.; Lee, H.Y. Overexpression of Zoysia ZjCIGR1 gene confers cold stress resistance to zoysiagrass. Plant Biotechnol. Rep. 2020, 14, 21–31. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Zong, J.; Chen, J.; Guo, H.; Guo, A.; Liu, J. Heterologous expression of the halophyte Zoysia matrella H(+)-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana. Plant Physiol. Biochem. 2015, 91, 49–55. [Google Scholar] [CrossRef]
- Teng, K.; Tan, P.; Xiao, G.; Han, L.; Chang, Z.; Chao, Y. Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Rep. 2017, 36, 179–191. [Google Scholar] [CrossRef]
- Teng, K.; Tan, P.; Guo, W.; Yue, Y.; Fan, X.; Wu, J. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger gene, ZjZFN1, improved salt tolerance in Arabidopsis. Front. Plant Sci. 2018, 9, 1159. [Google Scholar] [CrossRef]
- Guo, T.; Wang, S.; Fan, B.; Zou, S.; Chen, S.; Liu, W.; Wang, S.; Ai, L.; Han, L. Overexpression of the Zoysia japonica ZjABR1/ERF10 regulates plant growth and salt tolerance in transgenic Oryza sativa. Environ. Exp. Bot. 2023, 206, 105171. [Google Scholar] [CrossRef]
- Teng, K.; Tan, P.; Guo, W.; Yue, Y.; Fan, X.; Wu, J. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger protein gene, ZjZFN1, caused drought sensitivity in Arabidopsis. Acta Prataculturae Sinica 2019, 28, 129–138. [Google Scholar]
- Kang, J.-N.; Park, M.-Y.; Kim, W.-N.; Kang, H.-G.; Sun, H.-J.; Yang, D.-H.; Ko, S.-M.; Lee, H.-Y. Resistance of transgenic Zoysiagrass overexpressing the Zoysiagrass class II chitinase gene Zjchi2 against Rhizoctonia solani AG2-2 (IV). Plant Biotechnol. Rep. 2017, 11, 229–238. [Google Scholar] [CrossRef]
- Teng, K.; Chang, Z.; Li, X.; Sun, X.; Liang, X.; Xu, L.; Chao, Y.; Han, L. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR) caused chlorophyll degradation and accelerated senescence in Arabidopsis. Front. Plant Sci. 2016, 7, 1894. [Google Scholar] [CrossRef]
- Teng, K.; Yue, Y.; Zhang, H.; Li, H.; Xu, L.; Han, C.; Fan, X.; Wu, J. Functional characterization of the pheophytinase gene, ZjPPH, from Zoysia japonica in regulating chlorophyll degradation and photosynthesis. Front. Plant Sci. 2021, 12, 786570. [Google Scholar] [CrossRef]
- Teng, K.; Tan, P.; Guan, J.; Dong, D.; Liu, L.; Guo, Y.; Guo, W.; Yuesen, Y.; Fan, X.; Wu, J. Functional characterization of the chlorophyll b reductase gene NYC1 associated with chlorophyll degradation and photosynthesis in Zoysia japonica. Environ. Exp. Bot. 2021, 191, 104607. [Google Scholar] [CrossRef]
- Ganesan, M.; Han, Y.J.; Bae, T.W.; Hwang, O.J.; Chandrasekhar, T.; Shin, A.Y.; Goh, C.H.; Nishiguchi, S.; Song, I.J.; Lee, H.Y.; et al. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta 2012, 236, 1135–1150. [Google Scholar] [CrossRef]
- Dong, D.; Yang, Z.; Ma, Y.; Li, S.; Wang, M.; Li, Y.; Liu, Z.; Jia, C.; Han, L.; Chao, Y. Expression of a hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase 4 gene from Zoysia japonica (ZjHCT4) causes excessive elongation and lignin composition changes in Agrostis stolonifera. Int. J. Mol. Sci. 2022, 23, 9500. [Google Scholar] [CrossRef]
- Dong, D.; Zhao, Y.; Teng, K.; Tan, P.; Liu, Z.; Yang, Z.; Han, L.; Chao, Y. Expression of ZjPSY, a phytoene synthase gene from Zoysia japonica affects plant height and photosynthetic pigment contents. Plants 2022, 11, 395. [Google Scholar] [CrossRef]
- Yuan, Y.; Son, J.H.; Park, M.Y.; Sun, H.J.; Lee, H.Y.; Kang, H.G. Overexpression of ZjWRKY10, a Zoysia japonica WRKY transcription factor gene, accelerates leaf senescence and flowering in transgenic Arabidopsis. J. Plant Biotechnol. 2024, 51, 1–10. [Google Scholar] [CrossRef]
- Yang, D.H.; Sun, H.J.; Goh, C.H.; Song, P.S.; Bae, T.W.; Song, I.J.; Lim, Y.P.; Lim, P.O.; Lee, H.Y. Cloning of a Zoysia ZjLsL and its overexpression to induce axillary meristem initiation and tiller formation in Arabidopsis and bentgrass. Plant Biol. 2012, 14, 411–419. [Google Scholar] [CrossRef]
- Aslam, M.; Fakher, B.; Ashraf, M.A.; Cheng, Y.; Wang, B.; Qin, Y. Plant low-temperature stress: Signaling and response. Agronomy 2022, 12, 702. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Chen, S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 2020, 9, 560. [Google Scholar] [CrossRef]
- Naing, A.H.; Ai, T.N.; Lim, K.B.; Lee, I.J.; Kim, C.K. Overexpression of Rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco. Front. Plant Sci. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Yang, S.L.; Lan, S.S.; Deng, F.F.; Gong, M. Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L. J. Plant Growth Regul. 2016, 35, 815–826. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Sanghera, G.S.; Wani, S.H.; Hussain, W.; Singh, N. Engineering cold stress tolerance in crop plants. Curr. Genom. 2011, 12, 30. [Google Scholar] [CrossRef]
- Bae, E.J.; Lee, K.S.; Kim, D.S.; Han, E.H.; Lee, S.M.; Lee, D.W. Sod production and current status of cultivation management in Korea. Weed Turf. Sci. 2013, 2, 95–99. [Google Scholar] [CrossRef]
- Zuo, Z.F.; Kang, H.G.; Park, M.Y.; Jeong, H.; Sun, H.J.; Yang, D.H.; Lee, Y.E.; Song, P.S.; Lee, H.Y. Overexpression of ICE1, a regulator of cold-induced transcriptome, confers cold tolerance to transgenic Zoysia japonica. J. Plant Biol. 2019, 62, 137–146. [Google Scholar] [CrossRef]
- Patton, A.J.; Reicher, Z.J. Zoysiagrass species and genotypes differ in their winter injury and freeze tolerance. Crop Sci. 2007, 47, 1619–1627. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zhang, Q.; Liu, N.; Xu, Q.; Hu, L. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 2018, 13, e0198885. [Google Scholar] [CrossRef]
- Li, M.; Yuyama, N.; Hirata, M.; Wang, Y.; Han, J.; Cai, H. An integrated SSR based linkage map for Zoysia matrella L. and Z. japonica Steud. Mol. Breed. 2010, 26, 467–476. [Google Scholar] [CrossRef]
- Ding, C.; Liu, Y.; Shen, Y.; Gu, H. QTL analysis of traits relating to cold resistance of Zoysia japonica. Acta Agr. Sin. 2010, 18, 703–707. [Google Scholar]
- Guo, H.L.; Xuan, J.P.; Liu, J.X.; Zhang, Y.M.; Zheng, Y.Q. Association of molecular markers with cold tolerance and green period in zoysiagrass (Zoysia Willd.). Breed. Sci. 2012, 62, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Yu, X.; Holloway, H.M.P.; Tuong, T.D.; Schwartz, B.M.; Patton, A.J.; Arellano, C.; Livingston, D.P.; Milla-Lewis, S.R. Identification of QTL associated with cold acclimation and freezing tolerance in Zoysia japonica. Crop Sci. 2021, 61, 3044–3055. [Google Scholar] [CrossRef]
- Rabbani, M.A.; Maruyama, K.; Abe, H.; Khan, M.A.; Katsura, K.; Ito, Y.; Yoshiwara, K.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003, 133, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, C.M.; Doherty, C.J.; Gilmour, S.J.; Kim, Y.; Thomashow, M.F. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J. 2015, 82, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Skinner, J.S.; Meng, R.; Chang, Y.; Bhalerao, R.; Huner, N.P.; Finn, C.E.; Chen, T.H.; Hurry, V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 2006, 29, 1259–1272. [Google Scholar] [CrossRef]
- Zuo, Z.F.; Sun, H.J.; Lee, H.Y.; Kang, H.G. Identification of bHLH genes through genome-wide association study and antisense expression of ZjbHLH076/ZjICE1 influence tolerance to low temperature and salinity in Zoysia japonica. Plant Sci. 2021, 313, 111088. [Google Scholar] [CrossRef]
- Uddin, M.K.; Juraimi, A.S. Salinity tolerance turfgrass: History and prospects. Sci. World J. 2013, 2013, 409–413. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Liu, H.; Todd, J.L.; Luo, H. Turfgrass salinity stress and tolerance-A review. Plants 2023, 12, 925. [Google Scholar] [CrossRef]
- Alshammary, S.; Qian, Y.; Wallner, S. Growth response of four turfgrass species to salinity. Agric. Water Manag. 2004, 66, 97–111. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Fan, J. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef]
- Gaxiola, R.A.; Rao, R.; Sherman, A.; Grisafi, P.; Alper, S.L.; Fink, G.R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 1999, 96, 1480–1485. [Google Scholar] [CrossRef]
- Gamboa, M.C.; Baltierra, F.; Leon, G.; Krauskopf, E. Drought and salt tolerance enhancement of transgenic Arabidopsis by overexpression of the vacuolar pyrophosphatase 1 (EVP1) gene from Eucalyptus globulus. Plant Physiol. Biochem. 2013, 73, 99–105. [Google Scholar] [CrossRef]
- Maeda, Y. Effects of calcium application on the salt tolerance and sodium excretion from salt glands in zoysiagrass (Zoysia japonica). Gr. Sci. 2019, 65, 189–196. [Google Scholar] [CrossRef]
- Chen, Y.; Zong, J.; Tan, Z.; Li, L.; Hu, B.; Chen, C.; Chen, J.; Liu, J. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening. Plant Physiol. Biochem. 2015, 89, 44–52. [Google Scholar] [CrossRef]
- Li, G.; Yin, Q.; Chen, Y.; Li, X.; Chen, X.; Deng, H.; Zhu, F.; Wei, P. Overexpression of ZmDUF1644 from Zoysia matrella enhances salt tolerance in Arabidopsis thaliana. Plant Growth Regul. 2024, 102, 107–117. [Google Scholar] [CrossRef]
- Pasapula, V.; Shen, G.; Kuppu, S.; Paez-Valencia, J.; Mendoza, M.; Hou, P.; Chen, J.; Qiu, X.; Zhu, L.; Zhang, X. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol. J. 2011, 9, 88–99. [Google Scholar] [CrossRef]
- Schilling, R.K.; Marschner, P.; Shavrukov, Y.; Berger, B.; Tester, M.; Roy, S.J.; Plett, D.C. Expression of the A rabidopsis vacuolar H+-pyrophosphatase gene (AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol. J. 2014, 12, 378–386. [Google Scholar] [CrossRef]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Serba, D.D.; Hejl, R.W.; Burayu, W.; Umeda, K.; Bushman, B.S.; Williams, C.F. Pertinent water-saving management strategies for sustainable turfgrass in the desert US southwest. Sustainability 2022, 14, 12722. [Google Scholar] [CrossRef]
- Ali, F.; Bano, A.; Fazal, A. Recent methods of drought stress tolerance in plants. Plant Growth Regul. 2017, 82, 363–375. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Upadhyaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 2005, 146, 213–222. [Google Scholar] [CrossRef]
- Ervin, E.H.; Koski, A.J. Drought avoidance aspects and crop coefficients of Kentucky bluegrass and tall fescue turfs in the semiarid west. Crop Sci. 1998, 38, 788–795. [Google Scholar] [CrossRef]
- Jones, H.G. Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 1998, 49, 387–398. [Google Scholar] [CrossRef]
- Jespersen, D.; Schwartz, B. Drought avoidance traits in a collection of Zoysiagrasses. Hortic. Sci. 2018, 53, 1579–1585. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Y.H.; Zhou, L.P.; Liang, G.Q. A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress. Acta Ecol. Sin. 2013, 22, 106. [Google Scholar]
- Shao, H.B.; Song, W.Y.; Chu, L.Y. Advances of calcium signals involved in plant anti-drought. C. R. Biol. 2008, 331, 587–596. [Google Scholar] [CrossRef]
- Cousson, A. Involvement of phospholipase C-independent calcium-mediated abscisic acid signalling during Arabidopsis response to drought. Biol. Plant. 2009, 53, 53–62. [Google Scholar] [CrossRef]
- Xu, C.; Li, X.; Zhang, L. The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PLoS ONE 2013, 8, e68214. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Akram, N.; Al-Qurainy, F.; Foolad, M. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Adv. Agron. 2011, 111, 249–296. [Google Scholar]
- Chen, Z.; Li, X.; Zhang, L. Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russ. J. Plant Physiol. 2014, 61, 619–625. [Google Scholar] [CrossRef]
- Cohen, I.; Netzer, Y.; Sthein, I.; Gilichinsky, M.; Tel-Or, E. Plant growth regulators improve drought tolerance, reduce growth and evapotranspiration in deficit irrigated Zoysia japonica under field conditions. Plant Growth Regul. 2019, 88, 9–17. [Google Scholar] [CrossRef]
- Hussain, Q.; Asim, M.; Zhang, R.; Khan, R.; Farooq, S.; Wu, J. Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules 2021, 11, 1159. [Google Scholar] [CrossRef]
- Surabhi, G.-K.; Badajena, B. Recent advances in plant heat stress transcription factors. In Transcription Factors for Abiotic Stress Tolerance in Plants; Wani, S.H., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 153–200. [Google Scholar]
- De, L. Lawn grasses-a review. Int. J. Hortic. 2017, 7, 82–94. [Google Scholar] [CrossRef]
- Mohamadi, M.H.S.; Etemadi, N.; Nikbakht, A.; Pessarakli, M. Physiological responses of two cool-season grass species to trinexapac-ethyl under traffic stress. Hortic. Sci. 2017, 52, 99–109. [Google Scholar] [CrossRef]
- Choi, J.E.; Song, K.E.; Hong, S.H.; Konvalina, P.; Chung, J.I.; Kim, M.C.; Shim, S. Changes in growth and leaf hyperspectral reflectance of zoysiagrass (Zoysia japonica Steud.) under various soil compaction intensities. Hortic. Sci. 2024, 51, 127–140. [Google Scholar] [CrossRef]
- Williams, D.W.; Burrus, P.B.; Cropper, K.L. Seeded bermudagrass tolerance to simulated athletic field traffic as affected by cultivars and trinexapac-ethyl. HortTechnology 2010, 20, 533–538. [Google Scholar] [CrossRef]
- Kowalewski, A.R.; Schwartz, B.M.; Grimshaw, A.L.; Sullivan, D.G.; Peake, J.B. Correlations between hybrid bermudagrass morphology and wear tolerance. HortTechnology 2015, 25, 725–730. [Google Scholar] [CrossRef]
- An, Y.; Chen, L.J.; Meng, H.L.; Sun, M.; Yang, X.G.; Hu, X.H. Effect of traffic stresses on phenotypic traits of Zoysia Matrella. Acta Agr. Sin. 2005, 13, 299. [Google Scholar]
- Wang, X.; Song, G. Effects of traffic stress on the underground biomass of three turf grasses and soil physical properties. Chin. Landsc. Archit. 2007, 7, 65–67. [Google Scholar]
- Gutterson, N.; Reuber, T.L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 2004, 7, 465–471. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dubcovsky, J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Chen, J.Q.; Meng, X.P.; Zhang, Y.; Xia, M.; Wang, X.P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 2008, 30, 2191–2198. [Google Scholar] [CrossRef]
- Vega-Munoz, I.; Duran-Flores, D.; Fernandez-Fernandez, A.D.; Heyman, J.; Ritter, A.; Stael, S. Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Front. Plant Sci. 2020, 11, 610445. [Google Scholar] [CrossRef]
- Zhao, F.D.; Zeng, H.M. The related transcriptional factors in the transcriptome of mechanically-damaged Zoysia japonica. Biotechnol. Bull. 2019, 35, 7. [Google Scholar]
- Richardson, A.E.; Hake, S. Drawing a line: Grasses and boundaries. Plants 2018, 8, 4. [Google Scholar] [CrossRef]
- Mockaitis, K.; Estelle, M. Auxin receptors and plant development: A new signaling paradigm. Annu. Rev. Cell Dev. Biol. 2008, 24, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Ioio, R.D.; Linhares, F.S.; Sabatini, S. Emerging role of cytokinin as a regulator of cellular differentiation. Curr. Opin. Plant Biol. 2008, 11, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.H.; Zhao, X.Y.; Liu, Y.B.; Zhang, C.L.; O’Neill, S.D.; Zhang, X.S. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J. 2009, 59, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Schaller, G.E.; Bishopp, A.; Kieber, J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell 2015, 27, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, X.; Zhao, F.; Zhu, C.; Zeng, H. WUS and PIN1-related genes undergo dynamic expressional change during organ regeneration in response to wounding in Zoysia japonica. Mol. Biol. Rep. 2018, 45, 1733–1744. [Google Scholar] [CrossRef]
- Green, D., II; Fry, J.; Pair, J.; Tisserat, N. Pathogenicity of Rhizoctonia solani AG-2-2 and Ophiosphaerella herpotricha on zoysiagrass. Plant Dis. 1993, 77, 1040–1044. [Google Scholar] [CrossRef]
- Hyakumachi, M.; Mushika, T.; Ogiso, Y.; Toda, T.; Kageyama, K.; Tsuge, T. Characterization of a new cultural type (LP) of Rhizoctonia solani AG2-2 isolated from warm-season turfgrasses, and its genetic differentiation from other cultural types. Plant Pathol. 1998, 47, 1–9. [Google Scholar] [CrossRef]
- Kang, J.N.; Kang, H.G.; Sun, H.J.; Kwon, Y.I.; Yang, D.H.; Ko, S.M.; Lee, H.Y. Molecular cloning and characterization of chitinase genes from zoysiagrass (Zoysia Japonica Steud.). Plant Biotechnol. Rep. 2016, 10, 171–183. [Google Scholar] [CrossRef]
- Grover, A. Plant chitinases: Genetic diversity and physiological roles. CRC Crit. Rev. Plant Sci. 2012, 31, 57–73. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Giovanardi, D.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef]
- Khan, S.; Srivastava, S.; Karnwal, A.; Malik, T. Streptomyces as a promising biological control agents for plant pathogens. Front. Microbiol. 2023, 14, 1285543. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.W.; Lee, J.H.; Min, G.Y.; Kwak, Y.-S. Biological control of large patch disease by Streptomyces spp. in turfgrass. Weed Turf. Sci. 2016, 5, 29–34. [Google Scholar] [CrossRef]
- Jeon, C.W.; Kim, D.R.; Kwak, Y.S. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World J. Microbiol. Biotechnol. 2019, 35, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zeng, H.G.; Zhao, L.Y.; Yue, J.M.; Qi, X.; Li, M.L. Isolation and identification rust pathogens and the study of antioxidant enzyme activity and gene expression under rust infection in Zoysia japonica. Agriculture 2021, 11, 1200. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Chen, W.; Liu, T.; Zhong, S.; Huang, Q.; Ren, T.; Li, Z.; Tan, F.; Luo, P. Resistance performance of wheat stripe rust resistance gene Yr41 and its effect on yield parameters in F2 populations under field conditions. Crop Prot. 2020, 134, 105168. [Google Scholar] [CrossRef]
- Bhardwaj, S.C.; Gangwar, O.P.; Prasad, P.; Kumar, S.; Pal, D. Immunity to rusts in wheat: Theory, fact and practice. Indian Phytopathol. 2021, 74, 355–363. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Sun, Y.; Mao, P.; Qi, X.; Wang, Y. Analysis of leaf tissue structures between rust-resistant and rust-susceptible Zoysia grass (Zoysia japonica). Acta Physiol. Plant. 2018, 40, 75. [Google Scholar] [CrossRef]
- Wang, Y. Detection of germplasm accessions and SSR markers for rust resistance in zoysiagrass (Zoysia japonica Steud.). In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, Long Beach, CA, USA, 31 October–3 November 2010; pp. 61–63. [Google Scholar]
- Barrett, B.A.; Patterson, M.E.; Xiong, X. Behavioral responses of hunting billbug (coleoptera: Curculionidae) towards odors from different turfgrass species and adult conspecifics. Environ. Entomol. 2018, 47, 1541–1546. [Google Scholar] [CrossRef]
- Vickery, R.A. Studies on the fall army worm in the gulf coast district of Texas. Tech. Bull. 2012, 138, 64. [Google Scholar]
- Mlambo, S.; Mubayiwa, M.; Tarusikirwa, V.L.; Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. The fall armyworm and larger grain borer Pest invasions in Africa: Drivers, impacts and implications for food systems. Biology 2024, 13, 160. [Google Scholar] [CrossRef]
- Akeme, C.N.; Ngosong, C.; Sumbele, S.A.; Aslan, A.; Tening, A.S.; Krah, C.Y.; Kamanga, B.M.; Denih, A.; Nambangia, O.J. Different controlling methods of fall armyworm (Spodoptera frugiperda) in maize farms of small-scale producers in Cameroon. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 23–25 September 2021; p. 012053. [Google Scholar]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.-A.; Day, R.; Desneux, N.; Harrison, R.D.; Kriticos, D.; Rwomushana, I.; Van den Berg, J. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022, 43, 187–247. [Google Scholar] [CrossRef]
- Jessup, R.; Renganayaki, K.; Reinert, J.; Genovesi, A.; Engelke, M.; Paterson, A.; Kamps, T.; Schulze, S.; Howard, A.; Giliberto, B. Genetic mapping of fall armyworm resistance in zoysiagrass. Crop Sci. 2011, 51, 1774–1783. [Google Scholar] [CrossRef]
- Palma, L.; Munoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Gill, S.S.; Soberon, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef]
- Woo, H.R.; Kim, H.J.; Lim, P.O.; Nam, H.G. Leaf senescence: Systems and dynamics aspects. Annu. Rev. Plant Biol. 2019, 70, 347–376. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Lyu, J.I.; Woo, H.R.; Lim, P.O. New insights into the regulation of leaf senescence in Arabidopsis. J. Exp. Bot. 2018, 69, 787–799. [Google Scholar] [CrossRef]
- Kim, J. Sugar metabolism as input signals and fuel for leaf senescence. Genes Genom. 2019, 41, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 2013, 82, 505–517. [Google Scholar] [CrossRef]
- Hu, X.; Gu, T.; Khan, I.; Zada, A.; Jia, T. Research progress in the interconversion, turnover and degradation of Chlorophyll. Cells 2021, 10, 3134. [Google Scholar] [CrossRef]
- Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 2006, 57, 55–77. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Han, L.; Pislariu, C.; Nakashima, J.; Fu, C.; Jiang, Q.; Quan, L.; Blancaflor, E.B.; Tang, Y.; Bouton, J.H. From model to crop: Functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 2011, 157, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Christ, B.; Hörtensteiner, S. Mechanism and significance of chlorophyll breakdown. J. Plant Growth Regul. 2014, 33, 4–20. [Google Scholar] [CrossRef]
- Schelbert, S.; Aubry, S.; Burla, B.; Agne, B.; Kessler, F.; Krupinska, K.; Hörtensteiner, S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 2009, 21, 767–785. [Google Scholar] [CrossRef] [PubMed]
- Morita, R.; Sato, Y.; Masuda, Y.; Nishimura, M.; Kusaba, M. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 2009, 59, 940–952. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Kim, J.H.; Woo, H.R.; Kim, J.; Lim, P.O.; Lee, I.C.; Choi, S.H.; Hwang, D.; Nam, H.G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009, 323, 1053–1057. [Google Scholar] [CrossRef]
- Takano, H.K.; Dayan, F.E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef]
- Nikolić, R.; Zdravković-Korać, S.; Ninković, S.; Dragićević, M.; Miljuš-Đukić, J.; Banović, B.; Bohanec, B.; Savić, J.; Mitić, N. Fertile transgenic Lotus corniculatus resistant to the non-selective herbicide phosphinothricin. Ann. Appl. Biol. 2013, 163, 475–493. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health. 2021, 18, 1112. [Google Scholar] [CrossRef]
- Wagner, A.; Ralph, J.; Akiyama, T.; Flint, H.; Phillips, L.; Torr, K.; Nanayakkara, B.; Te Kiri, L. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc. Natl. Acad. Sci. USA 2007, 104, 11856–11861. [Google Scholar] [CrossRef]
- Zhou, X.; Rao, S.; Wrightstone, E.; Sun, T.; Lui, A.C.W.; Welsch, R.; Li, L. Phytoene synthase: The key rate-limiting enzyme of carotenoid biosynthesis in plants. Front. Plant Sci. 2022, 13, 884720. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.H.; Sun, H.J.; Jeong, O.C.; Song, I.J.; Bae, T.W.; Jin, I.D.; Kang, H.G.; Kwon, Y.I.; Song, P.S.; Lee, H.Y. Dwarf zoysiagrass (Zoysia japonica) cultivar “Halla Green 1” developed through mutation breeding. Korean J. Breed. Sci. 2016, 48, 516–520. [Google Scholar] [CrossRef]
- Song, I.J.; Sun, H.J.; Jeong, O.C.; Yang, D.H.; Jin, I.D.; Kang, H.G.; Ko, S.M.; Kwon, Y.I.; Bae, T.W.; Song, P.S.; et al. Development of dwarf type cultivar ‘Halla Green 2’in Zoysia japonica Steud. Korean J. Breed. Sci. 2017, 49, 031–035. [Google Scholar] [CrossRef]
- Lin, T.; Zhou, R.; Bi, B.; Song, L.; Chai, M.; Wang, Q.; Song, G. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant. Sci. Rep. 2020, 10, 18913. [Google Scholar] [CrossRef]
- Guo, L.; Plunkert, M.; Luo, X.; Liu, Z. Developmental regulation of stolon and rhizome. Curr. Opin. Plant Biol. 2021, 59, 101970. [Google Scholar] [CrossRef] [PubMed]
- Toriba, T.; Tokunaga, H.; Nagasawa, K.; Nie, F.; Yoshida, A.; Kyozuka, J. Suppression of leaf blade development by BLADE-ON-PETIOLE orthologs is a common strategy for underground rhizome growth. Curr. Biol. 2020, 30, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Patton, A.J.; Schwartz, B.M.; Kenworthy, K.E. Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: A review. Crop Sci. 2017, 57, 37–72. [Google Scholar] [CrossRef]
- Bae, T.W.; Kim, J.; Song, I.J.; Song, S.Y.; Lim, P.O.; Song, P.S.; Lee, H.Y. Production of unbolting lines through gamma-ray irradiation mutagenesis in genetically modified herbicide-tolerant Zoysia japonica. Breed. Sci. 2009, 59, 103–105. [Google Scholar] [CrossRef]
- Jaiswal, V.; Kakkar, M.; Kumari, P.; Zinta, G.; Gahlaut, V.; Kumar, S. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 2022, 25, 105026. [Google Scholar] [CrossRef]
Factors (*) | Genes | Gene Description | Gene Source | Reference |
---|---|---|---|---|
Phenotype/Regulation | Approaches | Species Analyzed | ||
Abiotic and Biotic Stress | ||||
Cold | ZjICE1 | MYC-type bHLH transcription factor | Z. japonica | [51] |
Increases cold tolerance | Overexpression | Arabidopsis | ||
ZjICE2 | MYC-type bHLH transcription factor | Z. japonica | [52] | |
Improves cold resistance and ROS scavenging ability | Overexpression | Arabidopsis | ||
ZjCIGR1 | GRAS family gene | Z. japonica | [53] | |
Increases cold stress resistance and expression of COR genes | Overexpression | Z. japonica | ||
Salt | ZmVP1 | Vacuolar H+-pyrophosphatase (VP) family gene | Z. matrella | [54] |
Improves salt tolerance | Overexpression | Arabidopsis | ||
ZmPDI | Protein disulfide isomerase gene | Z. matrella | [7] | |
Improves salt tolerance | Overexpression | Z. matrella | ||
ZjGRP | Glycine-rich RNA-binding protein gene | Z. japonica | [55] | |
Reduces salt tolerance | Overexpression | Arabidopsis | ||
ZjZFN1 | C2H2-type zinc finger gene | Z. japonica | [56] | |
Increases salt tolerance | Overexpression | Arabidopsis | ||
ZjABR1 | Ethylene-responsive factor | Z. japonica | [57] | |
Increases salt resistance, lower seed setting rate and dwarfism | Overexpression | Oryza sativa | ||
Drought | ZjICE2 | MYC-type bHLH transcription factor | Z. japonica | [52] |
Increases cold, drought, and salt tolerance | Overexpression | Arabidopsis | ||
ZjZFN1 | C2H2-type zinc finger gene | Z. japonica | [58] | |
Reduces plant adaptability to drought stress | Overexpression | Arabidopsis | ||
Pathogens | Zjchi2 | Class II chitinase gene | Z. japonica | [59] |
Enhances antifungal resistance | Overexpression | Z. japonica | ||
Sene- scence | ZjSGR | Magnesium-dechelatase | Z. japonica | [60] |
Accelerates chlorophyll degradation and reduces photosynthesis | Overexpression | Arabidopsis | ||
ZjPPH | Pheophytinase gene | Z. japonica | [61] | |
Accelerates chlorophyll degradation | Overexpression | Arabidopsis | ||
ZjNYC1 | Short-chain dehydrogenase/reductase | Z. japonica | [62] | |
Promotes chlorophyll degradation and senescence | Overexpression | Arabidopsis | ||
ZmNYC1 | Short-chain dehydrogenase/reductase | Z. matrella | [50] | |
Retains an extended greening phenotype | Knock-out | Z. matrella | ||
ZjEIN2 | Integral membrane protein | Z. japonica | [49] | |
Delays leaf senescence | Knock-out | Z. japonica | ||
Cultivation Management | ||||
Growth Control | phyA (S599A) | Phytochrome A (Serine 599 to Alanine) | Z. japonica | [63] |
Suppresses shade avoidance response and induces dwarfism | Overexpression | Avena sativa | ||
ZjHCT4 | Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase 4 gene | Z. japonica | [64] | |
Increases stem elongation | Overexpression | Agrostis stolonifera | ||
ZjPSY | Phytoene synthase gene | Z. japonica | [65] | |
Affects plant height and carotenoid synthesis | Overexpression | Arabidopsis | ||
Propagations | ZjWRKY10 | WRKY transcription factor 10 | Z. japonica | [66] |
Triggers early flowering | Overexpression | Arabidopsis | ||
ZjLsL | GRAS TF family gene | Z. japonica | [67] | |
Induces axillary meristem initiation and tiller formation | Overexpression | Arabidopsis, A. stolonifera |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yuan, Y.; Kim, J. Molecular Genetic Insights into the Stress Responses and Cultivation Management of Zoysiagrass: Illuminating the Pathways for Turf Improvement. Agriculture 2024, 14, 1718. https://doi.org/10.3390/agriculture14101718
Wang L, Yuan Y, Kim J. Molecular Genetic Insights into the Stress Responses and Cultivation Management of Zoysiagrass: Illuminating the Pathways for Turf Improvement. Agriculture. 2024; 14(10):1718. https://doi.org/10.3390/agriculture14101718
Chicago/Turabian StyleWang, Lanshuo, Yueyue Yuan, and Jeongsik Kim. 2024. "Molecular Genetic Insights into the Stress Responses and Cultivation Management of Zoysiagrass: Illuminating the Pathways for Turf Improvement" Agriculture 14, no. 10: 1718. https://doi.org/10.3390/agriculture14101718
APA StyleWang, L., Yuan, Y., & Kim, J. (2024). Molecular Genetic Insights into the Stress Responses and Cultivation Management of Zoysiagrass: Illuminating the Pathways for Turf Improvement. Agriculture, 14(10), 1718. https://doi.org/10.3390/agriculture14101718