Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data Set
2.2. Statistical Analysis
2.3. Structural Equation Models
2.4. Integrating Weather Data into Adaptability and Stability Analyses into a Shiny Applet
3. Results
3.1. Analysis of Variance for Cotton Yields in Different Environments
3.2. Yield Adaptability and Stability from Experimental Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crossa, J. From Genotype × Environment Interaction to Gene × Environment Interaction. Curr. Genom. 2012, 13, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.F.; Nascimento, M.; Do Amaral, A.T.; Silva, F.F.E.; Viana, A.P.; Vivas, M. Eberhart and Russel’s Bayesian Method in the Selection of Popcorn Cultivars. Crop Sci. 2015, 55, 571–577. [Google Scholar] [CrossRef]
- D’Eeckenbrugge, G.C.; Lacape, J.M. Distribution and Differentiation of Wild, Feral, and Cultivated Populations of Perennial Upland Cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS ONE 2014, 9, e107458. [Google Scholar] [CrossRef]
- Dos Santos, A.; da Silva Matos, E.; da Silva Freddi, O.; Galbieri, R.; Lal, R. Cotton Production Systems in the Brazilian Cerrado: The Impact of Soil Attributes on Field-Scale Yield. Eur. J. Agron. 2020, 118, 126090. [Google Scholar] [CrossRef]
- Van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What Should Students in Plant Breeding Know about the Statistical Aspects of Genotype × Environment Interactions? Crop Sci. 2016, 56, 2119–2140. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The Analysis of Adaptation in a Plant-Breeding Programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties 1. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Nascimento, M.; Ferreira, A.; Nascimento, A.C.C.; Salgado, C.C.; Cruz, C.D. Multiple Centroid Methodology to Analyze Genotype Adaptability. Crop Breed. Appl. Biotechnol. 2009, 9, 8–16. [Google Scholar] [CrossRef]
- Nascimento, M.; Silva, F.F.; Sáfadi, T.; Nascimento, A.C.C.; de Paula Ferreira, R.; Cruz, C.D. Abordagem Bayesiana Para Avaliação Da Adaptabilidade e Estabilidade de Genótipos de Alfafa. Pesqui. Agropecu. Bras. 2011, 46, 26–32. [Google Scholar] [CrossRef]
- Nascimento, M.; Nascimento, A.C.C.; e Silva, F.F.; Teodoro, P.E.; Azevedo, C.F.; de Oliveira, T.R.A.; do Amaral Junior, A.T.; Cruz, C.D.; Farias, F.J.C.; de Carvalho, L.P. Bayesian Segmented Regression Model for Adaptability and Stability Evaluation of Cotton Genotypes. Euphytica 2020, 216, 30. [Google Scholar] [CrossRef]
- Barbosa, W.F.; do Prado Hashimoto, T.; Matsuo, É.; Nascimento, A.C.C.; Azevedo, C.F.; Bezerra, A.R.G.; Nascimento, M. Artificial Neural Networks Based on Segmented Model for Adaptability and Stability Evaluation of Soybean Genotypes. Aust. J. Crop Sci. 2023, 17, 735–740. [Google Scholar] [CrossRef]
- Sparks, A. Nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef]
- Jarquín, D.; Crossa, J.; Lacaze, X.; Du Cheyron, P.; Daucourt, J.; Lorgeou, J.; Piraux, F.; Guerreiro, L.; Pérez, P.; Calus, M.; et al. A Reaction Norm Model for Genomic Selection Using High-Dimensional Genomic and Environmental Data. Theor. Appl. Genet. 2014, 127, 595–607. [Google Scholar] [CrossRef]
- Manthena, V.; Jarquín, D.; Howard, R. Integrating and Optimizing Genomic, Weather, and Secondary Trait Data for Multiclass Classification. Front. Genet. 2022, 13, 1032691. [Google Scholar] [CrossRef]
- Rosa, G.J.M.; Valente, B.D.; De Los Campos, G.; Wu, X.L.; Gianola, D.; Silva, M.A. Inferring Causal Phenotype Networks Using Structural Equation Models. Genet. Sel. Evol. 2011, 43, 6. [Google Scholar] [CrossRef]
- Pegolo, S.; Momen, M.; Morota, G.; Rosa, G.J.M.; Gianola, D.; Bittante, G.; Cecchinato, A. Structural Equation Modeling for Investigating Multi-Trait Genetic Architecture of Udder Health in Dairy Cattle. Sci. Rep. 2020, 10, 7751. [Google Scholar] [CrossRef]
- Suela, M.M.; Azevedo, C.F.; Nascimento, A.C.C.; Momen, M.; de Oliveira, A.C.B.; Caixeta, E.T.; Morota, G.; Nascimento, M. Genome-Wide Association Study for Morphological, Physiological, and Productive Traits in Coffea Arabica Using Structural Equation Models. Tree Genet. Genomes 2023, 19, 23. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; de Oliveira-Júnior, J.F.; Santiago, D.d.B.; Abdo, H.G.; Almohamad, H.; Al Dughairi, A.A.; da Silva Junior, C.A. The Assessment of Climatic, Environmental, and Socioeconomic Aspects of the Brazilian Cerrado. Ecol. Process. 2023, 12, 19. [Google Scholar] [CrossRef]
- Nascimento, D.T.F.; Novais, G.T. Clima Do Cerrado: Dinâmica Atmosférica e Características, Variabilidades e Tipologias Climáticas. Élisée-Rev. Geogr. UEG 2020, 9, e922021. [Google Scholar]
- Neri, A.V.; Schaefer, C.E.G.R.; Silva, A.F.; Souza, A.L.; Ferreira-Junior, W.G.; Meira-Neto, J.A.A. The Influence of Soils on the Floristic Composition and Community Structure of an Area of Brazilian Cerrado Vegetation. Edinburgh J. Bot. 2012, 69, 1–27. [Google Scholar] [CrossRef]
- Teodoro, P.E.; Farias, F.J.C.; de Carvalho, L.P.; Nascimento, M.; Peixoto, L.d.A.; Cruz, C.D.; Bhering, L.L. Identification of Optimal Environments for Cotton Cultivars in the Brazilian Cerrado. Agron. J. 2018, 110, 1226–1232. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Nascimento, M.; Teodoro, P.E.; Sant’anna, I.d.C.; Barroso, L.M.A.; Nascimento, A.C.C.; Azevedo, C.F.; Teodoro, L.P.R.; Farias, F.J.C.; Almeida, H.C.; de Carvalho, L.P. Influential Points in Adaptability and Stability Methods Based on Regression Models in Cotton Genotypes. Agronomy 2021, 11, 2179. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables, 1st ed.; Wiley: Hoboken, NJ, USA, 1989; Volume 1, ISBN 0471011711. [Google Scholar]
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. Acta Physiol. Scand. Suppl. 2012, 48, 1–36. [Google Scholar]
- Souza, A.A.D.; Freire, E.C.; Bruno, R.D.L.A.; Carvalho, L.P.D.; Silva Filho, J.L.D.; Pereira, W.E. Estabilidade e Adaptabilidade Do Algodoeiro Herbáceo No Cerrado Do Mato Grosso e Mato Grosso Do Sul. Pesqui. Agropecuária Bras. 2006, 41, 1125–1131. [Google Scholar] [CrossRef]
- Suinaga, A.; Bastos, S.; Rangel, P.; Eduardo, L.; Akiyoshi Suinaga, F.; Schetino Bastos, C.; Eduardo Pacifici Rangel, L. Phenotypic Adaptability and Stability of Cotton Cultivars in Mato Grosso State, Brazil. Pesqui. Agropecuária Trop. 2006, 36, 145–150. [Google Scholar]
- Teodoro, P.E.; Farias, F.J.C.; de Carvalho, L.P.; Ribeiro, L.P.; Nascimento, M.; Azevedo, C.F.; Cruz, C.D.; Bhering, L.L. Adaptability and Stability of Cotton Genotypes Regarding Fiber Yield and Quality Traits. Crop Sci. 2019, 59, 518–524. [Google Scholar] [CrossRef]
- Araújo, L.F.D.; Almeida, W.S.D.; Bertini, C.H.C.D.M.; Vidal Neto, F.D.C.; Bleicher, E. Correlations and Path Analysis in Components of Fiber Yield in Cultivars of Upland Cotton. Bragantia 2012, 71, 328–335. [Google Scholar] [CrossRef]
- Pimentel, F. Curso De Estatística Experimental, 15th ed.; Fund. Estudos Agrár; Luiz de Queiroz: São Paulo, Brazil, 2009. [Google Scholar]
- Lin, C.S.; Binns, M.R. A Superiority Measure of Cultivar Performance for Cultivar × Location Data. Can. J. Plant Sci. 1988, 68, 193–198. [Google Scholar] [CrossRef]
- Carneiro, P.C.d.S. Novas Metodologias de Análise Da Adaptabilidade e Estabilidade de Comportamento. Universidade Federal de Viçosa, Viçosa, Brazil, 1998. [Google Scholar]
- Plaisted, R.L.; Peterson, L.C. A Technique for Evaluating the Ability of Selections to Yield Consistently in Different Locations or Seasons. Am. J. Potato Res. 1959, 36, 381–385. [Google Scholar] [CrossRef]
- Wricke, G. Über Eine Methode Zur Erfassung Der Ökologischen Streubreite in Feldversuchen. Pflanzenzücht 1962, 47, 92–96. [Google Scholar]
- Gauch, H.G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs; Elsevier: Amsterdam, The Netherlands, 1992; ISBN 978-0-444-89240-9. [Google Scholar]
- Saini, D.K.; Impa, S.M.; McCallister, D.; Patil, G.B.; Abidi, N.; Ritchie, G.; Jaconis, S.Y.; Jagadish, K.S.V. High Day and Night Temperatures Impact on Cotton Yield and Quality—Current Status and Future Research Direction. J. Cott. Res. 2023, 6, 16. [Google Scholar] [CrossRef]
- Oosterhuis, D.M. Stress Physiology in Cotton, 1st ed.; Oosterhuis, D.M., Ed.; The Cotton Foundation: Cordova, TN, USA, 2011; ISBN 978-0-939809-07-3. [Google Scholar]
- Awaad, H.A. Sustainable Agriculture in Egypt, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-81873-9. [Google Scholar]
- Schlenker, W.; Roberts, M.J. Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef]
- Bakhsh, A.; Rehman, M.; Salman, S.; Ullah, R. Evaluation of Cotton Genotypes for Seed Cotton Yield and Fiber Quality Traits under Water Stress and Non-Stress Conditions. Sarhad J. Agric. 2019, 35, 161–170. [Google Scholar] [CrossRef]
- Zonta, J.H.; Bezerra, J.R.C.; Sofiatti, V.; Brandão, Z.N. Yield of Cotton Cultivars under Different Irrigation Depths in the Brazilian Semi-Arid Region. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 748–754. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Z.; Liu, S.; Li, W.; WeiTang; Dong, H. Effects of Deficit Irrigation and Plant Density on the Growth, Yield and Fiber Quality of Irrigated Cotton. Field Crop. Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, F.; Xin, Q.; Li, Y.; Lin, Z. Historical Variability of Cotton Yield and Response to Climate and Agronomic Management in Xinjiang, China. Sci. Total Environ. 2024, 912, 169327. [Google Scholar] [CrossRef]
- Abudoukerimu, A.; Hu, S.Q.; Nu’erpatiman, M. Effect of Climate Change on Cotton Growth Period and Yield in Kashgar City, Xinjiang Uygur Autonomous Region. Chin. J. Eco-Agric. 2015, 23, 919–930. [Google Scholar] [CrossRef]
- He, Z.S.; Wang, W.; Sun, H.J.; Luo, J.; Du, S.S.; Ma, J.X.; Ge, S.N.; Yao, Q.Q.; Wang, G.H.; Li, W.P.; et al. Effect of Wheat and Cotton Intercropping on Prevention of Wind Disaster at the Cotton Seedling Stage in Southern Xinjiang. China Cott. 2022, 49, 1–11. [Google Scholar] [CrossRef]
- Jobson, J.D. Applied Multivariate Data Analysis Regression and Experimental Design; Casella, G., Fienberg, S., Olkin, I., Eds.; Springer: New York, NY, USA, 1991; Volume 1, ISBN 978-1-4612-6960-1. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-0-470-54281-1. [Google Scholar]
- Robles-Zazueta, C.A.; Crespo-Herrera, L.A.; Piñera-Chavez, F.J.; Rivera-Amado, C.; Aradottir, G.I. Climate Change Impacts on Crop Breeding: Targeting Interacting Biotic and Abiotic Stresses for Wheat Improvement. Plant Genome 2024, 17, e20365. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate Change Challenges Plant Breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef] [PubMed]
Variables | Min | Max | Mean | Median | SD |
---|---|---|---|---|---|
FYG1 | 499.86 | 2416.36 | 1697.10 | 1759.41 | 508.19 |
FYG2 | 801.66 | 2297.76 | 1683.81 | 1698.99 | 438.19 |
FYG3 | 587.90 | 3093.16 | 1951.87 | 1873.70 | 591.22 |
FYG4 | 857.91 | 2220.70 | 1690.92 | 1777.35 | 355.78 |
FYG5 | 791.17 | 2473.47 | 1764.82 | 1830.74 | 410.74 |
FYG6 | 697.39 | 2585.81 | 1645.67 | 1670.49 | 471.06 |
FYG7 | 483.95 | 2786.23 | 1899.76 | 1876.04 | 599.87 |
FYG8 | 572.91 | 2592.31 | 1653.66 | 1691.46 | 564.53 |
FYG9 | 500.61 | 2604.90 | 1732.90 | 1701.33 | 516.39 |
FYG10 | 544.79 | 2614.17 | 1688.66 | 1813.26 | 562.52 |
FYG11 | 808.54 | 2889.71 | 1773.73 | 1805.11 | 540.02 |
FYG12 | 631.40 | 2712.45 | 1818.07 | 1914.97 | 571.76 |
Environmental index | −1083.63 | 735.94 | 0.00 | 87.20 | 469.92 |
TS | 23.15 | 26.13 | 24.60 | 24.29 | 1.02 |
T2M | 23.06 | 26.00 | 24.32 | 24.06 | 0.98 |
RH2M | 65.77 | 90.38 | 78.81 | 80.29 | 6.74 |
WS2M_MAX | 0.16 | 3.73 | 2.66 | 3.18 | 1.17 |
PRECTOTCORR | 1.28 | 9.76 | 5.16 | 5.42 | 3.19 |
CLRSKY_SFC_PAR_TOT | 141.16 | 156.78 | 151.32 | 152.30 | 3.70 |
Source of Variation | Degrees of Freedom | Mean Square |
---|---|---|
Genotype | 11 | 714,991.03 * |
Environments | 18 | 10,599,770.42 * |
Block/environments | 57 | 42,223.61 * |
GEI | 198 | 198,986.84 * |
Residual | 627 | 23,035.85 |
Mean | - | 1750.08 |
Coefficient of variation (%) | - | 8.67 |
ECERSEM-AdaptStab | ER | |||||||
---|---|---|---|---|---|---|---|---|
Genotypes | ||||||||
TMG 41 WS | 1697.10 | 1.09 * | 29,027.54 * | 0.88 | 1697.10 | 0.98 | 42,531.17 * | 0.82 |
TMG 43 WS | 1683.81 | 0.91 * | 40,204.28 * | 0.77 | 1683.81 | 0.80 * | 47,251.75 * | 0.74 |
IMA CV 690 | 1951.87 | 1.52 * | 14,313.06 * | 0.95 | 1951.87 | 1.19 * | 30,820.69 * | 0.90 |
IMA 5675 B2RF | 1690.92 | 0.92 * | 19,863.71 * | 0.83 | 1690.92 | 0.67 * | 24,638.68 * | 0.77 |
IMA 08 WS | 1764.82 | 0.70 * | 39,891.97 * | 0.75 | 1764.82 | 0.70 * | 58,017.47 * | 0.64 |
NUOPAL | 1645.67 | 0.43 * | 9471.79 * | 0.95 | 1645.67 | 0.94 | 22,563.10 * | 0.88 |
DP 555 BGRR | 1899.76 | 1.55 * | 5824.48 * | 0.98 | 1899.76 | 1.24 * | 12,839.75 * | 0.95 |
DELTA OPAL | 1653.66 | 0.92 * | 21,167.75 * | 0.92 | 1653.66 | 1.13 * | 35,320.60 * | 0.88 |
BRS 286 | 1732.90 | 1.25 * | 22,869.41 * | 0.91 | 1732.90 | 1.03 | 30,571.81 * | 0.87 |
BRS 335 | 1688.66 | 0.52 * | 35,714.77 * | 0.88 | 1688.66 | 1.08 * | 58,215.95 * | 0.81 |
BRS 368 RF | 1773.73 | 0.78 * | 30,656.38 * | 0.88 | 1773.73 | 1.06 | 38,783.87 * | 0.86 |
BRS 369 RF | 1818.07 | 1.36 * | 12,435.91 * | 0.95 | 1818.07 | 1.18 * | 15,010.33 * | 0.94 |
General mean | 1750.08 | - | - | - | 1750.08 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suela, M.M.; Nascimento, M.; Nascimento, A.C.C.; Azevedo, C.F.; Teodoro, P.E.; Farias, F.J.C.; de Carvalho, L.P.; Jarquin, D. Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding. Agriculture 2024, 14, 1914. https://doi.org/10.3390/agriculture14111914
Suela MM, Nascimento M, Nascimento ACC, Azevedo CF, Teodoro PE, Farias FJC, de Carvalho LP, Jarquin D. Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding. Agriculture. 2024; 14(11):1914. https://doi.org/10.3390/agriculture14111914
Chicago/Turabian StyleSuela, Matheus Massariol, Moysés Nascimento, Ana Carolina Campana Nascimento, Camila Ferreira Azevedo, Paulo Eduardo Teodoro, Francisco José Correia Farias, Luiz Paulo de Carvalho, and Diego Jarquin. 2024. "Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding" Agriculture 14, no. 11: 1914. https://doi.org/10.3390/agriculture14111914
APA StyleSuela, M. M., Nascimento, M., Nascimento, A. C. C., Azevedo, C. F., Teodoro, P. E., Farias, F. J. C., de Carvalho, L. P., & Jarquin, D. (2024). Integrating Environmental Covariates into Adaptability and Stability Analyses: A Structural Equation Modeling Approach for Cotton Breeding. Agriculture, 14(11), 1914. https://doi.org/10.3390/agriculture14111914