Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement
Abstract
:1. Introduction
2. Principles of AI—Predictive Modeling
2.1. Advanced Predictive Algorithms
2.2. Cross-Validation and Optimization
3. AI in Genomic Research
3.1. Types of Machine Learning in Genomic Study
3.2. Genome Assembly, Structure and Function
3.3. Transcription Factor Binding Sites Studies
4. Data Challenges
4.1. The Role of Big Data in AI Model Training
4.2. Addressing Data Challenges in Crop Breeding Programs
5. Future Perspectives
5.1. Addressing Ethical Concerns and the Role of AI in Sustainable Agriculture
5.2. Prospects for Integrating AI Across Large-Scale Breeding Programs Worldwide
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bose, S.; Banerjee, S.; Kumar, S.; Saha, A.; Nandy, D.; Hazra, S. Review of Applications of Artificial Intelligence (AI) Methods in Crop Research. J. Appl. Genet. 2024, 65, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Jubair, S.; Domaratzki, M. Crop Genomic Selection with Deep Learning and Environmental Data: A Survey. Front. Artif. Intell. 2023, 5, 1040295. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Roorkiwal, M.; Sorrells, M.E. Genomic Selection for Crop Improvement: An Introduction. In Genomic Selection for Crop Improvement; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–6. ISBN 9783319631684. [Google Scholar]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.R.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A Review of Deep Learning Applications for Genomic Selection. BMC Genomics 2021, 22, 19. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Stahl, A.; Wittkop, B.; Lichthardt, C.; Nagler, S.; Rose, T.; Chen, T.-W.; Zetzsche, H.; Seddig, S.; Majid Baig, M.; et al. Breeding Improves Wheat Productivity under Contrasting Agrochemical Input Levels. Nat. Plants 2019, 5, 706–714. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Ismail, A.M.; Heuer, S.; Thomson, M.J.; Wissuwa, M. Genetic and Genomic Approaches to Develop Rice Germplasm for Problem Soils. Plant Mol. Biol. 2007, 65, 547–570. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, H.; Lin, L.; Huang, Y.; Lin, H.; Que, Y. Deep Learning-Empowered Crop Breeding: Intelligent, Efficient and Promising. Front. Plant Sci. 2023, 14, 1260089. [Google Scholar] [CrossRef]
- Varshney, R.K.; Thudi, M.; Pandey, M.K.; Tardieu, F.; Ojiewo, C.; Vadez, V.; Whitbread, A.M.; Siddique, K.H.M.; Nguyen, H.T.; Carberry, P.S.; et al. Accelerating Genetic Gains in Legumes for the Development of Prosperous Smallholder Agriculture: Integrating Genomics, Phenotyping, Systems Modelling and Agronomy. J. Exp. Bot. 2018, 69, 3293–3312. [Google Scholar] [CrossRef]
- Khan, M.H.U.; Wang, S.; Wang, J.; Ahmar, S.; Saeed, S.; Khan, S.U.; Xu, X.; Chen, H.; Bhat, J.A.; Feng, X. Applications of Artificial Intelligence in Climate-Resilient Smart-Crop Breeding. Int. J. Mol. Sci. 2022, 23, 11156. [Google Scholar] [CrossRef]
- Pourkheirandish, M.; Hensel, G.; Kilian, B.; Senthil, N.; Chen, G.; Sameri, M.; Azhaguvel, P.; Sakuma, S.; Dhanagond, S.; Sharma, R.; et al. Evolution of the Grain Dispersal System in Barley. Cell 2015, 162, 527–539. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Springer US: Boston, MA, USA, 1989; ISBN 9780412317606. [Google Scholar]
- History of CART. Available online: https://usdd-dev.thinkbluedata.com/history-cart (accessed on 28 November 2024).
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017; ISBN 9781315139470. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Madhukar, A.; Dashora, K.; Kumar, V. Climate Trends in Temperature and Water Variables during Wheat Growing Season and Impact on Yield. Environ. Process. 2021, 8, 1047–1072. [Google Scholar] [CrossRef]
- Wójcik-Gront, E. Variables Influencing Yield-Scaled Global Warming Potential and Yield of Winter Wheat Production. Field Crops Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE Inst. Electr. Electron. Eng. 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wang, H.; Cimen, E.; Singh, N.; Buckler, E. Deep Learning for Plant Genomics and Crop Improvement. Curr. Opin. Plant Biol. 2020, 54, 34–41. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016. [Google Scholar]
- Shanmugam, I.; Rethnaraj, J.; Rajendran, S.; Manickam, S. Prediction on Field Crops Yield Based on Analysis of Deep Learning Model. Indones. J. Electr. Eng. Comput. Sci. 2023, 30, 518. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Ozdemir, O.B.; Chen, R.; Li, R. A Deep Ensemble Encoder Network Method for Improved Polygenic Risk Score Prediction. medRxiv 2024. [Google Scholar]
- Geleta, M.; Mas Montserrat, D.; Giro-i-Nieto, X.; Ioannidis, A.G. Deep Variational Autoencoders for Population Genetics. bioRxiv 2023. [Google Scholar]
- Battey, C.J.; Coffing, G.C.; Kern, A.D. Visualizing Population Structure with Variational Autoencoders. G3 Genes|Genomes|Genet. 2021, 11, jkaa036. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Springer US: Boston, MA, USA, 2009; pp. 532–538. ISBN 9780387355443. [Google Scholar]
- Crossa, J.; Pérez, P.; Hickey, J.; Burgueño, J.; Ornella, L.; Cerón-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; et al. Genomic Prediction in CIMMYT Maize and Wheat Breeding Programs. Heredity 2014, 112, 48–60. [Google Scholar] [CrossRef]
- Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Newton, MA, USA, 2017. [Google Scholar]
- Wu, B.; Zhang, H.; Lin, L.; Wang, H.; Gao, Y.; Zhao, L.; Chen, Y.-P.P.; Chen, R.; Gu, L. A Similarity Searching System for Biological Phenotype Images Using Deep Convolutional Encoder-Decoder Architecture. Curr. Bioinform. 2019, 14, 628–639. [Google Scholar] [CrossRef]
- Mejía-Guerra, M.K.; Buckler, E.S. A K-Mer Grammar Analysis to Uncover Maize Regulatory Architecture. BMC Plant Biol. 2019, 19, 103. [Google Scholar] [CrossRef]
- Washburn, J.D.; Mejia-Guerra, M.K.; Ramstein, G.; Kremling, K.A.; Valluru, R.; Buckler, E.S.; Wang, H. Evolutionarily Informed Deep Learning Methods for Predicting Relative Transcript Abundance from DNA Sequence. Proc. Natl. Acad. Sci. USA 2019, 116, 5542–5549. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Wei, Z.; Hakonarson, H. DeepPolyA: A Convolutional Neural Network Approach for Polyadenylation Site Prediction. IEEE Access 2018, 6, 24340–24349. [Google Scholar] [CrossRef]
- Tran, T.-T.; Choi, J.-W.; Le, T.-T.; Kim, J.-W. A Comparative Study of Deep CNN in Forecasting and Classifying the Macronutrient Deficiencies on Development of Tomato Plant. Appl. Sci. 2019, 9, 1601. [Google Scholar] [CrossRef]
- Wu, Y.-X.; Wu, Q.-B.; Zhu, J.-Q. Data-driven Wind Speed Forecasting Using Deep Feature Extraction and LSTM. IET Renew. Power Gener. 2019, 13, 2062–2069. [Google Scholar] [CrossRef]
- Monaco, A.; Pantaleo, E.; Amoroso, N.; Lacalamita, A.; Lo Giudice, C.; Fonzino, A.; Fosso, B.; Picardi, E.; Tangaro, S.; Pesole, G.; et al. A Primer on Machine Learning Techniques for Genomic Applications. Comput. Struct. Biotechnol. J. 2021, 19, 4345–4359. [Google Scholar] [CrossRef] [PubMed]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Pawełkowicz, M.; Zieniuk, B.; Staszek, P.; Przybysz, A. From Sequencing to Genome Editing in Cucurbitaceae: Application of Modern Genomic Techniques to Enhance Plant Traits. Agriculture 2024, 14, 90. [Google Scholar] [CrossRef]
- Bastani, O.; Kim, C.; Bastani, H. Interpretability via Model Extraction. arXiv 2017, arXiv:1706.09773. [Google Scholar]
- De La Vega, F.M.; Chowdhury, S.; Moore, B.; Frise, E.; McCarthy, J.; Hernandez, E.J.; Wong, T.; James, K.; Guidugli, L.; Agrawal, P.B.; et al. Artificial Intelligence Enables Comprehensive Genome Interpretation and Nomination of Candidate Diagnoses for Rare Genetic Diseases. Genome Med. 2021, 13, 153. [Google Scholar] [CrossRef]
- Vilhekar, R.S.; Rawekar, A. Artificial Intelligence in Genetics. Cureus 2024, 16, e52035. [Google Scholar] [CrossRef]
- Manekar, S.C.; Sathe, S.R. A Benchmark Study of K-Mer Counting Methods for High-Throughput Sequencing. Gigascience 2018, 7, giy125. [Google Scholar] [CrossRef]
- Karikari, B.; Lemay, M.-A.; Belzile, F. K-Mer-Based Genome-Wide Association Studies in Plants: Advances, Challenges, and Perspectives. Genes 2023, 14, 1439. [Google Scholar] [CrossRef]
- Orozco-Arias, S.; Candamil-Cortés, M.S.; Jaimes, P.A.; Piña, J.S.; Tabares-Soto, R.; Guyot, R.; Isaza, G. K-Mer-Based Machine Learning Method to Classify LTR-Retrotransposons in Plant Genomes. PeerJ 2021, 9, e11456. [Google Scholar] [CrossRef]
- Moeckel, C.; Mareboina, M.; Konnaris, M.A.; Chan, C.S.Y.; Mouratidis, I.; Montgomery, A.; Chantzi, N.; Pavlopoulos, G.A.; Georgakopoulos-Soares, I. A Survey of K-Mer Methods and Applications in Bioinformatics. Comput. Struct. Biotechnol. J. 2024, 23, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Osipowski, P.; Pawełkowicz, M.; Wojcieszek, M.; Skarzyńska, A.; Przybecki, Z.; Pląder, W. A High-Quality Cucumber Genome Assembly Enhances Computational Comparative Genomics. Mol. Genet. Genomics 2020, 295, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Pflug, J.M.; Holmes, V.R.; Burrus, C.; Johnston, J.S.; Maddison, D.R. Measuring Genome Sizes Using Read-Depth, k-Mers, and Flow Cytometry: Methodological Comparisons in Beetles (Coleoptera). G3 2020, 10, 3047–3060. [Google Scholar] [CrossRef]
- Chen, L.; Liu, G.; Zhang, T. Integrating Machine Learning and Genome Editing for Crop Improvement. Abiotech 2024, 5, 262–277. [Google Scholar] [CrossRef]
- Shen, Z.; Bao, W.; Huang, D.-S. Recurrent Neural Network for Predicting Transcription Factor Binding Sites. Sci. Rep. 2018, 8, 15270. [Google Scholar] [CrossRef]
- Peleke, F.F.; Zumkeller, S.M.; Gültas, M.; Schmitt, A.; Szymański, J. Deep Learning the Cis-Regulatory Code for Gene Expression in Selected Model Plants. Nat. Commun. 2024, 15, 3488. [Google Scholar] [CrossRef]
- Mahood, E.H.; Kruse, L.H.; Moghe, G.D. Machine Learning: A Powerful Tool for Gene Function Prediction in Plants. Appl. Plant Sci. 2020, 8, e11376. [Google Scholar] [CrossRef]
- van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. iScience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, P.; Sun, W.; Xu, J.; Liao, L.; Cao, Y.; Han, Y. Improving Plant miRNA-Target Prediction with Self-Supervised k-Mer Embedding and Spectral Graph Convolutional Neural Network. PeerJ 2024, 12, e17396. [Google Scholar] [CrossRef]
- Niazian, M.; Niedbała, G. Machine Learning for Plant Breeding and Biotechnology. Agriculture 2020, 10, 436. [Google Scholar] [CrossRef]
- Yan, J.; Wang, X. Machine Learning Bridges Omics Sciences and Plant Breeding. Trends Plant Sci. 2023, 28, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the Sequence Specificities of DNA- and RNA-Binding Proteins by Deep Learning. Nat. Biotechnol. 2015, 33, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Feng, J. Imputation for Transcription Factor Binding Predictions Based on Deep Learning. PLoS Comput. Biol. 2017, 13, e1005403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Troyanskaya, O.G. Predicting Effects of Noncoding Variants with Deep Learning-Based Sequence Model. Nat. Methods 2015, 12, 931–934. [Google Scholar] [CrossRef]
- Wang, M.; Tai, C.; E, W.; Wei, L. DeFine: Deep Convolutional Neural Networks Accurately Quantify Intensities of Transcription Factor-DNA Binding and Facilitate Evaluation of Functional Non-Coding Variants. Nucleic Acids Res. 2018, 46, e69. [Google Scholar] [CrossRef]
- Greenside, P.; Shimko, T.; Fordyce, P.; Kundaje, A. Discovering Epistatic Feature Interactions from Neural Network Models of Regulatory DNA Sequences. Bioinformatics 2018, 34, i629–i637. [Google Scholar] [CrossRef]
- Yan, J.; Kurgan, L. DRNApred, Fast Sequence-Based Method That Accurately Predicts and Discriminates DNA- and RNA-Binding Residues. Nucleic Acids Res. 2017, 45, e84. [Google Scholar] [CrossRef]
- Lane, S.W.; Williams, D.A.; Watt, F.M. Modulating the Stem Cell Niche for Tissue Regeneration. Nat. Biotechnol. 2014, 32, 795–803. [Google Scholar] [CrossRef]
- Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.F.G.; Qin, C.; Zidek, A.; Nelson, A.; Bridgland, A.; Penedones, H.; et al. De novo structure prediction with deep-learning based scoring. Annu Rev Biochem. 2018, 77, 6. [Google Scholar]
- International Wheat Genome Sequencing Consortium. Available online: https://www.wheatgenome.org/ (accessed on 28 November 2024).
- International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.; Yu, C.; Dong, J.; Hu, J. Integration of Multi-Omics Technologies for Crop Improvement: Status and Prospects. Front. Bioinform. 2022, 2, 1027457. [Google Scholar] [CrossRef] [PubMed]
- van Eeuwijk, F.A.; Bustos-Korts, D.; Millet, E.J.; Boer, M.P.; Kruijer, W.; Thompson, A.; Malosetti, M.; Iwata, H.; Quiroz, R.; Kuppe, C.; et al. Modelling Strategies for Assessing and Increasing the Effectiveness of New Phenotyping Techniques in Plant Breeding. Plant Sci. 2019, 282, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Merchant, N.; Lyons, E.; Goff, S.; Vaughn, M.; Ware, D.; Micklos, D.; Antin, P. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLoS Biol. 2016, 14, e1002342. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef]
- Hendre, P.S.; Muthemba, S.; Kariba, R.; Muchugi, A.; Fu, Y.; Chang, Y.; Song, B.; Liu, H.; Liu, M.; Liao, X.; et al. African Orphan Crops Consortium (AOCC): Status of Developing Genomic Resources for African Orphan Crops. Planta 2019, 250, 989–1003. [Google Scholar] [CrossRef]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for Plant Breeding and Genetics. Plant Genome 2012, 5, 92–102. [Google Scholar] [CrossRef]
- Jasanoff, S.; Hurlbut, J.B. A Global Observatory for Gene Editing. Nature 2018, 555, 435–437. [Google Scholar] [CrossRef]
- International Maize and Wheat Improvement Center. Available online: https://www.cimmyt.org/ (accessed on 28 November 2024).
- Ramírez, F.; Ryan, D.P.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis. Nucleic Acids Res. 2016, 44, W160–W165. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. arXiv 2016, arXiv:1605.08695. [Google Scholar]
- Voss-Fels, K.P.; Cooper, M.; Hayes, B.J. Accelerating Crop Genetic Gains with Genomic Selection. Züchter Genet. Breed. Res. 2019, 132, 669–686. [Google Scholar] [CrossRef]
- El Jarroudi, M.; Kouadio, L.; Delfosse, P.; Bock, C.H.; Mahlein, A.-K.; Fettweis, X.; Mercatoris, B.; Adams, F.; Lenné, J.M.; Hamdioui, S. Leveraging Edge Artificial Intelligence for Sustainable Agriculture. Nat. Sustain. 2024, 7, 846–854. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The Global Landscape of AI Ethics Guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Janzen, T. The Farmer’s Business Network, Inc. Available online: https://www.agdatatransparent.com/certified/fbn (accessed on 12 December 2024).
- Dara, R.; Hazrati Fard, S.M.; Kaur, J. Recommendations for Ethical and Responsible Use of Artificial Intelligence in Digital Agriculture. Front. Artif. Intell. 2022, 5, 884192. [Google Scholar] [CrossRef]
- IBM Largest Ever AI Toolset Release Is Tailor Made for 9 Industries and Professions. Available online: https://www.agritechtomorrow.com/news/2018/09/25/ibm-largest-ever-ai-toolset-release-is-tailor-made-for-9-industries-and-professions/11028/ (accessed on 12 December 2024).
- Abramov, M. Data Bias in AI Agriculture: Ensuring Fairness & Sustainability. Available online: https://keymakr.com/blog/data-bias-in-ai-agriculture-ensuring-fairness-and-sustainability (accessed on 28 November 2024).
- Ryan, M. The Social and Ethical Impacts of Artificial Intelligence in Agriculture: Mapping the Agricultural AI Literature. AI Soc. 2022, 38, 2473–24485. [Google Scholar] [CrossRef]
- Pandey, D.K.; Mishra, R. Towards Sustainable Agriculture: Harnessing AI for Global Food Security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- Plevin, R. Central Valley Effort Aims to Train Farmworkers to Master the Technology Replacing Fieldwork. Los Angeles Times. 2024. Available online: https://www.latimes.com/california/story/2024-09-21/central-valley-effort-trains-farmworkers-to-master-technology-replacing-fieldwork (accessed on 12 December 2024).
- Mushtaq, M.A.; Ahmed, H.G.M.-D.; Zeng, Y. Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. Sustainability 2024, 16, 5688. [Google Scholar] [CrossRef]
- Rai, K.K. Integrating Speed Breeding with Artificial Intelligence for Developing Climate-Smart Crops. Mol. Biol. Rep. 2022, 49, 11385–11402. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, X.; Li, H.; Zheng, H.; Zhang, J.; Olsen, M.S.; Varshney, R.K.; Prasanna, B.M.; Qian, Q. Smart Breeding Driven by Big Data, Artificial Intelligence, and Integrated Genomic-Enviromic Prediction. Mol. Plant 2022, 15, 1664–1695. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Pagani, A.; Zamboni, P.; Singh, A.K. AI-Powered Revolution in Plant Sciences: Advancements, Applications, and Challenges for Sustainable Agriculture and Food Security. Explor. Foods Foodomics 2024, 2, 443–459. [Google Scholar] [CrossRef]
Algorithm | Principle | Key Features | Advantages | Limitations |
---|---|---|---|---|
CART (Classification and Regression Trees) | Recursive binary splitting of data based on feature thresholds. | Decision tree structure with internal nodes representing feature splits and leaf nodes with predictions. | Simple, interpretable, and useful for categorical and continuous outcomes. | Prone to overfitting and sensitive to small changes in the data. |
SVM (Support Vector Machine) | Maximizes the margin between data classes using a hyperplane in high-dimensional space. | Utilizes support vectors (critical data points) to define the optimal hyperplane. | Effective in high-dimensional spaces and works well for both classification and regression. | Computationally expensive for large datasets, sensitive to kernel choice, and challenging to interpret. |
RF (Random Forest) | Ensemble method that builds multiple decision trees and aggregates their predictions. | Uses bootstrapping and random feature selection to reduce variance and overfitting. | Handles large datasets, robust to overfitting, and provides feature importance. | Slower prediction time compared to single trees, and reduced interpretability. |
CNN (Convolutional Neural Network) | Extracts spatial hierarchies from grid-like data (e.g., images) using convolutional and pooling layers. | Employs convolutional, pooling, and fully connected layers for feature extraction. | Excellent for image, spatial, and sequential data. Automatic feature extraction. | Computationally intensive, requires large datasets, and often acts as a “black box”. |
RNN (Recurrent Neural Network) | Processes sequential data with loops that allow information to persist through “hidden states”. | Captures temporal dependencies and processes data with order dependencies. | Ideal for time-series, sequential, and text data. Effective in capturing time-dependent relationships. | Suffers from vanishing/exploding gradient issues, and training can be slow for long sequences. |
VAE (Variational Autoencoder) | Encodes data into a probabilistic latent space and decodes to generate synthetic samples. | Probabilistic encoder-decoder model with a latent variable space. | Generates new data samples, useful for dimensionality reduction, and unsupervised learning. | Requires careful tuning of latent space size, and reconstructions may be blurry for image data. |
Task | AI Application |
---|---|
Genome assembly | AI improves accuracy in assembling complex genomes |
Gap filling in genome assembly | AI better predicts missing genome fragments |
Genome size estimation | AI defines the computational assessment of genome size |
Structural variant detection | AI indicates large genomic variations |
Functional annotation of plant genes | AI predicts and compiles coding domains and TFBS |
Cis-regulatory element prediction | AI analyses of gene expression flanking regions |
Prediction of TF binding sites | AI determines TFBS * prediction and cell-specific interactions |
Annotation of regulatory regions | AI models long-range DNA sequence relationships |
Genetic variation analysis | AI links phenotypic traits with genetic markers |
CRISPR target site optimization | AI design of gRNAs for gene editing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Gront, E.; Zieniuk, B.; Pawełkowicz, M. Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement. Agriculture 2024, 14, 2299. https://doi.org/10.3390/agriculture14122299
Wójcik-Gront E, Zieniuk B, Pawełkowicz M. Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement. Agriculture. 2024; 14(12):2299. https://doi.org/10.3390/agriculture14122299
Chicago/Turabian StyleWójcik-Gront, Elżbieta, Bartłomiej Zieniuk, and Magdalena Pawełkowicz. 2024. "Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement" Agriculture 14, no. 12: 2299. https://doi.org/10.3390/agriculture14122299
APA StyleWójcik-Gront, E., Zieniuk, B., & Pawełkowicz, M. (2024). Harnessing AI-Powered Genomic Research for Sustainable Crop Improvement. Agriculture, 14(12), 2299. https://doi.org/10.3390/agriculture14122299