Estimation of Dry Matter Yield in Mediterranean Pastures: Comparative Study between Rising Plate Meter and Grassmaster II Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fields and Chronology of Tests
2.2. Equipment
- -
- An electronic graduated ruler to measure pasture height (Figure 6a);
- -
- A Grassmaster II electronic capacitance probe (Novel Ways Electronic, Hamilton, New Zealand; Figure 6b) to measure pasture corrected meter reading (CMR) (https://www.novel.co.nz; accessed on 24 August 2024);
- -
- A “bluetooth-enabled Jenquip EC20 electronic platemeter”, RPM (Jenquip, 21 Darragh Road, Feilding, New Zealand; Figure 6c), to measure pasture compressed height (HRPM) (https://www.jenquip.nz; accessed on 24 August 2024);
- -
- Frames of 0.25 m2 (quadrats of 0.50 m by 0.50 m) to mark pasture sample areas (Figure 7a);
- -
- Portable electric grass shears (Figure 7b) and plastic bags for storing the pasture samples.
2.3. Field Measurements, Pasture Sample Collection, and Analyses
2.4. Data Analysis
3. Results
3.1. Pasture Spatial and Temporal Variability
3.2. Relationship between Variables: Calibration Phase
3.3. Relationship between Variables: Validation Phase
4. Discussion
4.1. Pasture Spatial and Temporal Variability
4.2. Relationship between Variables
4.3. Sensor Errors: Practical Applications in Future Studies
4.4. Limitations and Perspectives of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nickmilder, C.; Tedde, A.; Dufrasne, I.; Lessire, F.; Tychon, B.; Curnel, Y.; Bindelle, J.; Soyeurt, H. Development of machine learning models to predict compressed sward height in Walloon pastures based on Sentinel-1, Sentinel-2 and meteorological data using multiple data transformations. Remote Sens. 2021, 13, 408. [Google Scholar] [CrossRef]
- Mas-Portocarrero, W.; Cuzco-Mas, E.; Mathios-Flores, M.A.; Angulo-Villacorta, C.D. Evaluation of two methods for estimating dry matter availability in mixed pastures in the Amazon region Peru. Pastos Y Forrajes 2022, 45, 1–8. [Google Scholar]
- Cárdenas, J.; Balocchi, O.; Calvache, I. Calibration of the rising plate meter for mixed pastures of Ryegrass (Lolium perenne L.) and Kikuyo (Cenchrus clandestinus). Chilean J. Agric. Anim. Sci. 2020, 36, 216–223. [Google Scholar] [CrossRef]
- Palma-Molina, P.; Hennessy, T.; Dillon, E.; Onakuse, S.; Moran, B.; Shalloo, L. Evaluating the effects of grass management technologies on the physical, environmental, and financial performance of Irish pasture-based dairy farms. J. Dairy Sci. 2023, 106, 6249–6262. [Google Scholar] [CrossRef] [PubMed]
- Beukes, P.C.; McCarthy, S.; Wims, C.M.; Gregorini, P.; Romera, A.J. Regular estimates of herbage mass can improve profitability of pasture-based dairy systems. Anim. Prod. Sci. 2019, 59, 359–367. [Google Scholar] [CrossRef]
- Legg, M.; Bradley, S. Ultrasonic arrays for remote sensing of pasture biomass. Remote Sens. 2020, 12, 111. [Google Scholar] [CrossRef]
- Murphy, D.J.; Shine, P.; O’Brien, B.; O’Donovan, M.; Murphy, M.D. Utilising grassland management and climate data for more accurate prediction of herbage mass using the rising plate meter. Prec. Agric. 2021, 22, 1189–1216. [Google Scholar] [CrossRef]
- Chapa, J.M.; Pichlbauer, B.; Bobal, M.; Guse, C.; Drillich, M.; Iwersen, M. Field evaluation of a rising plate meter to estimate herbage mass in Austrian pastures. Sensors 2023, 23, 7477. [Google Scholar] [CrossRef]
- Gargiulo, J.; Clark, C.; Lyons, N.; Veyrac, G.; Beale, P.; Garcia, S. Spatial and temporal pasture biomass estimation integrating electronic plate meter, Planet CubeSats and Sentinel-2 satellite data. Remote Sens. 2020, 12, 3222. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2012, 68, 110–119. [Google Scholar] [CrossRef]
- Hutchinson, K.; Scobie, D.; Beautrais, J.; Mackay, A.; Rennie, G.; Moss, R.; Dynes, R. A protocol for sampling pastures in hill country. J. N. Z. Grassl. 2016, 78, 203–210. [Google Scholar] [CrossRef]
- Lawson, A.R.; Giri, K.; Thomson, A.L.; Karunaratne, S.B.; Smith, K.F.; Jacobs, J.L.; Morse-McNabb, E.M. Multi-site calibration and validation of a wide-angle ultrasonic sensor and precise GPS to estimate pasture mass at the paddock scale. Comput. Electron. Agric. 2022, 195, 106786. [Google Scholar] [CrossRef]
- O’ Donovan, M.; Dillon, P.; Rath, M.; Stakelum, G. A comparison of four methods of herbage mass estimation. Ir. J. Agric. Food Res. 2002, 41, 17–27. [Google Scholar]
- Punalekar, S.M.; Thomson, A.; Verhoef, A.; Humphries, D.J.; Reynolds, C.K. Assessing suitability of Sentinel-2 bands for monitoring of nutrient concentration of pastures with a range of species compositions. Agronomy 2021, 11, 1661. [Google Scholar] [CrossRef]
- Karunaratne, S.; Thomson, A.; Morse-McNabb, E.; Wijesingha, J.; Stayches, D.; Copland, A.; Jacobs, J. The Fusion of spectral and structural datasets derived from an airborne multispectral sensor for estimation of pasture dry matter yield at paddock scale with time. Remote Sens. 2020, 12, 2017. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Monitoring seasonal pasture quality degradation in the Mediterranean montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; da Silva, J.M. Calibration of a capacitance probe for measurement and mapping of dry matter yield in Mediterranean pastures. Precis. Agric. 2011, 12, 860–875. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Calibration of GrassMaster II to estimate green and dry matter yield in Mediterranean pastures: Effect of pasture moisture content. Crop. Pasture Sci. 2016, 67, 780–791. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Monitoring pasture variability: Optical OptRx® crop sensor versus Grassmaster II capacitance probe. Environ. Monit. Assess. 2016, 188, 117. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Moral, F.; Carvajal-Ramirez, F.; da Silva, J.M. Estimation of productivity in dryland Mediterranean pastures: Long-term field tests to calibration and validation of the Grassmaster II probe. AgriEngineering 2020, 2, 15. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Arlington, VA, USA, 2005. [Google Scholar]
- Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’ Brien, B.; Hennessy, D.; Hurley, M.; Murphy, M.D. Evaluation of the precision of the rising plate meter for measuring compressed sward height on heterogeneous grassland swards. Precis. Agric. 2021, 22, 922–946. [Google Scholar] [CrossRef]
- Murphy, D.J.; Murphy, M.D.; O’Brien, B.; O’Donovan, M. A review of precision technologies for optimising pasture measurement on Irish grassland. Agriculture 2021, 11, 600. [Google Scholar] [CrossRef]
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. (Eds.) Grasslands and Herbivore Production in Europe and Effects of Common Policies; Quae: Versailles, France, 2014; pp. 54–56. [Google Scholar]
- Fernández-Habas, J.; Moreno, A.M.G.; Hidalgo-Fernández, M.A.T.; Leal-Murillo, J.R.; Oar, B.A.; Gámez-Giráldez, P.J.; González Dugo, M.P.; Fernández-Rebollo, P. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Sci. Total Environ. 2021, 791, 148101. [Google Scholar] [CrossRef]
- Efe Serrano, J. Pastures in Alentejo: Technical Basis for Characterization, Grazing and Improvement; Universidade de Évora—ICAM, Ed.; Gráfica Eborense: Évora, Portugal, 2006; pp. 165–178. (In Portuguese) [Google Scholar]
- Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of ultrasonic and spectral sensor data for improving the estimation of biomass in grasslands with heterogeneous sward structure. Remote Sens. 2017, 9, 98. [Google Scholar] [CrossRef]
- Murphy, D.J.; O’ Brien, B.; Murphy, M.D. Development of a grass measurement optimisation tool to efficiently measure herbage mass on grazed pastures. Comput. Electron. Agric. 2020, 178, 105799. [Google Scholar] [CrossRef]
- Murphy, W.M.; Silman, J.P.; Mena Barreto, A.D. A comparison of quadrat, capacitance meter, HFRO sward stick, and rising plate meter for estimating herbage mass in a smooth-stalked meadowgrass-dominant white clover sward. Grass Forage Sci. 1995, 50, 452–455. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage ass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef]
- Alckmin, T.G.; Kooistra, L.; Rawnsley, R.; Lucieer, A. Comparing methods to estimate perennial ryegrass biomass: Canopy height and spectral vegetation indices. Precis. Agric. 2021, 22, 205–225. [Google Scholar] [CrossRef]
- Schaefer, M.T.; Lamb, D.W. A combination of plant NDVI and Lidar measurements improve the estimation of pasture biomass in Tall Fescue (Festuca arundinacea Var. Fletcher). Remote Sens. 2016, 8, 109. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Paniágua, L.L. Pasture quality assessment through NDVI obtained by Remote Sensing: A validation study in the Mediterranean silvo-pastoral ecosystem. Agriculture 2024, 14, 1350. [Google Scholar] [CrossRef]
- Ni, W.; Wang, T.; Wu, Y.; Liu, X.; Li, Z.; Yang, R.; Zhang, K.; Yang, J.; Zeng, M.; Hu, N.; et al. Multi-task deep learning model for quantitative volatile organic compounds analysis by feature fusion of electronic nose sensing. Sens. Actuators B Chem. 2024, 417, 136206. [Google Scholar] [CrossRef]
Test Code (n) | Pasture Parameter | GM (kg ha−1) | DM (kg ha−1) | PMC (%) | H (mm) | CMR | HRPM (mm) |
---|---|---|---|---|---|---|---|
I (48) | Mean ± SD (Range) | 6254 ± 4274 (1423–21,090) | 571 ± 257 (237–1703) | 89.0 ± 3.3 (79.7–93.4) | 105.3 ± 71.2 (14–400) | 5050 ± 1444 (3219–9442) | 53.1 ± 35.4 (14–232) |
II (48) | Mean ± SD (Range) | 13,256 ± 70,548 (3867–27,917) | 1834 ± 745 (580–3460) | 84.6 ± 3.2 (75.2–90.5) | 163.5 ± 83.5 (30–420) | 5762 ± 1479 (3214–10,540) | 103.6 ± 55.3 (22–244) |
III (48) | Mean ± SD (Range) | 8245 ± 4759 (2580–25,037) | 2353 ± 1108 (933–5400) | 69.9 ± 6.9 (51.9–80.2) | 249.6 ± 140.9 (60–660) | 5366 ± 2005 (3196–18,531) | 77.8 ± 42.2 (22–240) |
Test Code (n) | Pasture Parameter | GM (kg ha−1) | DM (kg ha−1) | PMC (%) | H (mm) | CMR | HRPM (mm) |
---|---|---|---|---|---|---|---|
1 (8) | Mean ± SD (Range) | 13,003 ± 6821 (4590–25,890) | 1346 ± 470 (730–2160) | 88.7 ± 2.4 (84.1–91.7) | 172.5 ± 71.3 (80–260) | 5891 ± 1229 (3621–8956) | 67.4 ± 24.9 (29–128) |
2 (8) | Mean ± SD (Range) | 15,426 ± 8360 (6050–26,210) | 2260 ± 940 (1040–3470) | 84.1 ± 3.4 (78.9–88.2) | 341.4 ± 104.6 (230–500) | 7136 ± 1164 (4664–10,483) | 128.2 ± 53.1 (63–247) |
3 (8) | Mean ± SD (Range) | 18,084 ± 10,294 (6220–33,580) | 1684 ± 767 (720–2690) | 90.0 ± 1.3 (88.4–92.0) | 182.5 ± 44.6 (110–250) | 6242 ± 1293 (4371–9153) | 92.0 ± 17.6 (55–134) |
4 (8) | Mean ± SD (Range) | 8373 ± 3163 (4850–12,890) | 1456 ± 371 (960–1970) | 81.8 ± 2.8 (76.5–85.0) | 222.5 ± 91.0 (100 –326) | 7526 ± 2412 (4285–11,076) | 92.0 ± 34.7 (24–152) |
5 (8) | Mean ± SD (Range) | 18,749 ± 9233 (8040–31,710) | 2301 ± 970 (1200–3670) | 87.2 ± 1.3 (85.1–88.6) | 253.8 ± 96.6 (100–380) | 7997 ± 1860 (5267–12,947) | 120.4 ± 46.4 (57–209) |
6 (8) | Mean ± SD (Range) | 12,281 ± 2385 (9250–15,830) | 1763 ± 387 (1270–2510) | 85.7 ± 0.9 (84.1–86.8) | 186.3 ± 45.3 (130–260) | 7050 ± 960 (5163–9542) | 77.0 ± 9.6 (58–88) |
7 (8) | Mean ± SD (Range) | 15,269 ± 3606 (7750–18,700) | 2195 ± 517 (1240–2840) | 85.5 ± 1.6 (83.2–87.6) | 256.3 ± 77.4 (130–380) | 8122 ± 1263 (5479–11,078) | 135.5 ± 38.1 (68–213) |
8 (8) | Mean ± SD (Range) | 20,443 ± 8564 (6720–33,930) | 2534 ± 899 (1050–3600) | 87.2 ± 1.5 (84.4–89.4) | 238.8 ± 97.3 (150–400) | 7630 ± 2568 (3981–16,901) | 111.2 ± 55.7 (43–245) |
9 (8) | Mean ± SD (Range) | 24,520 ± 11,062 (10,410–42,600) | 2771 ± 1302 (1350–5290) | 88.5 ± 1.6 (87.0–91.0) | 231.3 ± 95.8 (120 –400) | 9794 ± 3033 (4610–15,794) | 108.5 ± 33.7 (58–174) |
10 (8) | Mean ± SD (Range) | 52,130 ± 16,046 (24,734–72,240) | 5288 ± 1677 (2603–7648) | 90.1 ± 1.2 (88.9–92.2) | 270.0 ± 49.0 (220–350) | 8150 ± 1613 (5489–12,446) | 171.1 ± 42.7 (92–245) |
11 (8) | Mean ± SD (Range) | 34,251 ± 14,754 (13,413–62,499) | 4514 ± 1633 (1940–7119) | 86.5 ± 1.3 (84.8–88.6) | 461.3 ± 92.8 (340–580) | 11,276 ± 2099 (6588–15,554) | 232.2 ± 24.7 (151–246) |
12 (8) | Mean ± SD (Range) | 35,008 ± 15,151 (15,290–54,344) | 3925 ± 1771 (1562–6340) | 88.8 ± 1.2 (86.8–90.8) | 501.3 ± 107.8 (370–640) | 10,634 ± 2493 (6597–16,264) | 208.7 ± 44.6 (127–246) |
13 (8) | Mean ± SD (Range) | 28,139 ± 8685 (21,890–49,170) | 4090 ± 1017 (3140–6080) | 85.1 ± 3.6 (76.7–87.6) | 292.5 ± 76.3 (190–380) | 8212 ± 2445 (4053–13,375) | 153.3 ± 31.7 (90–206) |
14 (8) | Mean ± SD (Range) | 30,146 ± 13,458 (19,490–58,410) | 4586 ± 1539 (3230–7470) | 84.3 ± 1.6 (82.4–87.2) | 388.8 ± 115.4 (250–600) | 9568 ± 2850 (5265–19,104) | 201.1 ± 45.4 (106–246) |
15 (8) | Mean ± SD (Range) | 28,390 ± 7950 (21,170–43,370) | 5820 ± 1938 (4220–7850) | 79.5 ± 2.8 (75.7–84.9) | 573.8 ± 117.8 (380–740) | 10,589 ± 2312 (6142–15,535) | 249.0 ± 1.0 (226–250) |
16 (8) | Mean ± SD (Range) | 24,101 ± 6099 (15,990–30,410) | 4186 ± 1055 (2790–6040) | 82.5 ± 1.7 (80.1–85.9) | 296.3 ± 38.1 (240–340) | 8925 ± 893 (6185–10,057) | 195.0 ± 10.2 (112–232) |
17 (8) | Mean ± SD (Range) | 27,746 ± 7712 (16,700–39,850) | 4824 ± 1393 (3570–7310) | 82.4 ± 2.7 (77.4–86.1) | 440.0 ± 134.0 (300–630) | 8662 ± 1918 (5122–13,196) | 146.8 ± 62.4 (60–247) |
18 (8) | Mean ± SD (Range) | 25,628 ± 6281 (14,281–34,989) | 4612 ± 1104 (3427–6834) | 77.5 ± 1.9 (72.8–82.7) | 407.2 ± 118.6 (281–539) | 9132 ± 1712 (6378–14,008) | 158.2 ± 31.5 (71–250) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, J.; Franco, J.; Shahidian, S.; Moral, F.J. Estimation of Dry Matter Yield in Mediterranean Pastures: Comparative Study between Rising Plate Meter and Grassmaster II Probe. Agriculture 2024, 14, 1737. https://doi.org/10.3390/agriculture14101737
Serrano J, Franco J, Shahidian S, Moral FJ. Estimation of Dry Matter Yield in Mediterranean Pastures: Comparative Study between Rising Plate Meter and Grassmaster II Probe. Agriculture. 2024; 14(10):1737. https://doi.org/10.3390/agriculture14101737
Chicago/Turabian StyleSerrano, João, Júlio Franco, Shakib Shahidian, and Francisco J. Moral. 2024. "Estimation of Dry Matter Yield in Mediterranean Pastures: Comparative Study between Rising Plate Meter and Grassmaster II Probe" Agriculture 14, no. 10: 1737. https://doi.org/10.3390/agriculture14101737
APA StyleSerrano, J., Franco, J., Shahidian, S., & Moral, F. J. (2024). Estimation of Dry Matter Yield in Mediterranean Pastures: Comparative Study between Rising Plate Meter and Grassmaster II Probe. Agriculture, 14(10), 1737. https://doi.org/10.3390/agriculture14101737