Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Drought Index Calculation
2.3.2. Drought Events Pooling and Excluding
- (1)
- Initial Drought Event Identification: Using the drought classification threshold (Table S2), the initial definition of a drought event is established based on run theory. Continuous SPEI time “fragments” below the drought threshold are considered drought events. The left and right endpoints of each “fragment” represent the start () and end () times of the drought event, respectively. In Figure 2, a total of nine drought events are confirmed (the red-shaded area), and their durations are recorded as ; their severity as ; and their peak intensities as .
- (2)
- Pooling Drought Events: Define two adjacent drought event attributes as and . If they meet both of the following conditions, perform the pooling operation:
- ①
- The interval between adjacent drought events is less than a specific critical value , i.e., .
- ②
- The ratio of the internal excess corresponding to the interval between adjacent drought events to the previous drought event severity is less than a specific critical value , i.e., . Here, the internal excess refers to the accumulated part (green-filled area) where the internal SPEI value is greater than the drought threshold, .
- (3)
- Excluding Minor Drought Events: Let and represent the average duration and severity of all droughts. For each drought event, if either or falls below a certain threshold, the event is excluded, i.e., or . For example, in Figure 2, the drought events i + 7 and i + 8 have their exclusion rates for duration and severity denoted as and , respectively. Duration () and severity () are the most critical characteristics of drought events and have the greatest impact on the environment, so they are considered to have equal weights, i.e., [28,29].
2.3.3. Drought Dynamic Risk Index
- (1)
- Exposure (Ex)
- (2)
- Vulnerability (Vu)
- (3)
- Resilience (Re)
3. Results
3.1. Drought Event Identification
3.2. Characteristics of Drought Events under Different Predictive Scenarios
3.3. Dynamic Changes in Drought Risk under Different Scenarios
4. Discussion
4.1. Impact of Pooling and Exclusion on Drought Event Identification
4.2. Future Intensification of Drought Characteristics in the DRB
4.3. Future Increased Drought Risk in the DRB Based on EVR
4.4. Limitations
5. Conclusions
- (1)
- The duration and number of drought events are sensitive indicators for , while the duration, severity, and number of events are sensitive to . After pooling and exclusion, the average station duration increased from 1.58 to 1.73 months, severity rose from 0.82 to 0.93, and the number of drought events decreased from 96 to 83.
- (2)
- Future droughts in the DRB are expected to intensify, characterized by longer durations and greater intensities. Compared to the observed period, the projected duration of drought events will increase from 1–4 to 1–7 months, and severity will rise from 0.2–1.2 to 0.2–4.3. The average peak severity during the observed period, at 1.17, is lower than the future projections under RCP4.5a (RCP8.5a) and RCP4.5b (RCP8.5b) at 1.29 (1.30) and 1.28 (1.23), respectively. The duration of drought development and relief will increase from 0.39 and 0.34 months to over 0.68 and 0.69 months.
- (3)
- The future DRB is expected to experience reduced resilience, increased vulnerability, and greater exposure, collectively exacerbating the risk of drought events. The risk level is projected to rise from the observed Level I to Levels II-IV in the future, with RCP4.5 surpassing RCP8.5, mountainous regions exceeding plains, and risk factors overall increasing initially before declining over time.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.; Zeng, M.; Luo, K. How does climate change affect food security? Evidence from China. Environ. Impact Assess. Rev. 2024, 104, 107324. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.C.; Feng, P.Y.; Chen, C.; Luo, J.J.; Harrison, M.T.; Liu, K.; Liu, D.L.; Yu, Q.W.; Guo, X.W.; et al. Probabilistic analysis of drought impact on wheat yield and climate change implications. Weather Clim. Extrem. 2024, 45, 100708. [Google Scholar] [CrossRef]
- Li, Z.W.; Sun, F.B.; Wang, H.; Wang, T.T.; Feng, Y. Detecting the interactions between vegetation greenness and drought globally. Atmos. Res. 2024, 304, 107409. [Google Scholar] [CrossRef]
- Denissen, J.M.C.; Teuling, A.J.; Pitman, A.J.; Koirala, S.; Migliavacca, M.; Li, W.T.; Reichstein, M.; Winkler, A.J.; Zhan, C.H.; Orth, R. Widespread shift from ecosystem energy to water limitation with climate change. Nat. Clim. Chang. 2022, 12, 677–684. [Google Scholar] [CrossRef]
- Douris, J. WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); World Meteorological Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Salvador, C.; Nieto, R.; Kapwata, T.; Wright, C.Y.; Reason, C.; Gimeno, L.; Vicedo-Cabrera, A.M. Analyzing the effects of drought at different time scales on cause-specific mortality in South Africa. Environ. Res. Lett. 2024, 19, 054022. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2021. [Google Scholar]
- Wan, L.L.; Bento, V.A.; Qu, Y.P.; Qiu, J.X.; Song, H.Q.; Zhang, R.R.; Wu, X.P.; Xu, F.; Lu, J.K.; Wang, Q.F. Drought characteristics and dominant factors across China: Insights from high-resolution daily SPEI dataset between 1979 and 2018. Sci. Total Environ. 2023, 901, 166362. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Futur. 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.H.; Christensen, O.B.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.S.; Domínguez-Castro, F. A review of environmental droughts; increased risk under global warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Chen, N.C.; Li, R.H.; Zhang, X.; Yang, C.; Wang, X.P.; Zeng, L.L.; Tang, S.J.; Wang, W.; Li, D.R.; Niyogi, D. Drought propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2 datasets. J. Hydrol. 2020, 588, 125026. [Google Scholar] [CrossRef]
- Loon, V.; Anne, F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Wu, J.F.; Chen, X.H.; Yao, H.X.; Zhang, D.J. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci. Total Environ. 2021, 765, 144232. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shan, F.Z.; Yue, H.; Wang, X.; Fan, Y.H. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. J. Environ. Manag. 2023, 333, 117460. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, S.Z.; Huang, Q.; Wang, H.; Wang, L.; Fang, W. Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. J. Hydrol. 2019, 575, 1052–1064. [Google Scholar] [CrossRef]
- Dai, R.; Huang, J.L.; Chen, Z.Y.; Zhou, J.; Havea, P.H. Impacts of anthropogenic climate change on meteorological drought in China. Front. Earth Sci. 2024, 12, 1369523. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Tootoonchi, F.; Sadegh, M.; Haerter, J.O.; Räty, O.; Grabs, T.; Teutschbein, C. Copulas for hydroclimatic analysis: A practice-oriented overview. Wiley Interdiscip. Rev. Water 2022, 9, e1579. [Google Scholar] [CrossRef]
- Xu, W.T.; Tang, M.; Jin, J.L.; Xie, Q.C.; Hu, Y.S. Concept and method of drought disaster risk measurement based on drought propagation level--a case study of AnHui Province. Ecol. Indic. 2024, 166, 112286. [Google Scholar] [CrossRef]
- Bera, D.; Dutta, D. Analysing spatio-temporal drought characteristics and copula-based return period in Indian Gangetic Basin (1901–2021). Environ. Sci. Pollut. Res. 2024, 31, 22471–22493. [Google Scholar] [CrossRef]
- Simsek, O.; Bazrafshan, O.; Azhdari, Z. A 3-D copula for risk analysis of meteorological drought in the Black Sea Region. Theor. Appl. Climatol. 2024, 155, 1185–1200. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.Z.; Huang, Q.; Leng, G.Y.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X.D. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Baartman, J.E.M.; Nunes, J.P.; Keesstra, S.D.; Sadeghi, S.H. Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecol. Indic. 2018, 87, 196–208. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Chamani, R.; Kalehhouei, M.; Haji, K. Health variability based on SPI and estimating median and mean health indices in watersheds and townships of Kermanshah Province, Iran. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.Y.; Liu, Y.Y.; Che, Y. Future river basin health assessment through reliability-resilience-vulnerability: Thresholds of multiple dryness conditions. Sci. Total Environ. 2020, 741, 140395. [Google Scholar] [CrossRef] [PubMed]
- Raposo, V.D.M.B.; Costa, V.A.F.; Rodrigues, A.F. A review of recent developments on drought characterization, propagation, and influential factors. Sci. Total Environ. 2023, 898, 165550. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.J.; Du, Y.L.; Singh, V.P.; Chen, X.H.; Zhao, Y.; Ma, M.W.; Li, K.; Wu, H.O. Bivariate design of hydrological droughts and their alterations under a changing environment. J. Hydrol. Eng. 2019, 24, 04019015. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.Z.; Huang, Q.; Leng, G.Y.; Fang, W.; Wang, L.; Wang, H. Propagation thresholds of meteorological drought for triggering hydrological drought at various levels. Sci. Total Environ. 2020, 712, 136502. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T. Drought over East Asia: A review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Lv, M.C.; Gao, X.P.; Liu, Y.Z.; Ju, W.H.; Sun, B.W.; Li, W.J.; Zhou, X.S. The impact of using different probability representations in application of equidistant quantile matching for bias adjustment of daily precipitation over the Daqing River Basin, North China. Int. J. Climatol. 2022, 42, 777–796. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zhou, T.J.; Wu, P.L.; Chen, X.L. Potential predictability of North China summer drought. J. Clim. 2019, 32, 7247–7264. [Google Scholar] [CrossRef]
- Xing, Y.C.; Li, Y.Z.; Bai, P.; Zhuang, J.C.; Feng, A.Q.; Huang, M.J.; Yan, H.W. Spatiotemporal variations of meteorological drought and its dominant factors in different climate regions for the first two decades of the twenty-first century. Theor. Appl. Climatol. 2024, 155, 3631–3645. [Google Scholar] [CrossRef]
- Guo, E.L.; Wang, Y.F.; Jirigala, B.; Jin, E. Spatiotemporal variations of precipitation concentration and their potential links to drought in mainland China. J. Clean. Prod. 2020, 267, 122004. [Google Scholar] [CrossRef]
- Gao, X.P.; Lv, M.C.; Liu, Y.Z.; Sun, B.W. Precipitation projection over Daqing River Basin (North China) considering the evolution of dependence structures. Environ. Sci. Pollut. Res. 2022, 29, 5415–5430. [Google Scholar] [CrossRef] [PubMed]
- QX/T 118-2020; Meteorological Observation Data Quality Control. China Meteorological Administration: Bejing, China, 2020.
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Park, C.; Min, S. Multi-RCM near-term projections of summer climate extremes over East Asia. Clim. Dyn. 2019, 52, 4937–4952. [Google Scholar] [CrossRef]
- Xu, Y.F.; Li, T.; Xu, M.; Tan, L.; Shen, S.H. Assessing Climate Change Effects on Winter Wheat Production in the 3H Plain: Insights from Bias-Corrected CMIP6 Projections. Agriculture 2024, 14, 469. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A resampling approach for correcting systematic spatiotemporal biases for multiple variables in a changing climate. Water Resour. Res. 2019, 55, 754–770. [Google Scholar] [CrossRef]
- Spuler, F.R.; Wessel, J.B.; Comyn-Platt, E.; Varndell, J.; Cagnazzo, C. ibicus: A new open-source Python package and comprehensive interface for statistical bias adjustment and evaluation in climate modelling (v1.0.1). Geosci. Model Dev. 2024, 17, 1249–1269. [Google Scholar] [CrossRef]
- Zhang, W.J.; Guo, H.Z.; Wu, Y.J.; Zhang, Z.Z.; Yin, H.; Feng, K.; Liu, J.; Fu, B. Temporal and Spatial Evolution of Meteorological Drought in Inner Mongolia Inland River Basin and Its Driving Factors. Sustainability 2024, 16, 2212. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Li, Y.S.; Chen, Y.N.; Chen, Y.P.; Duan, W.L.; Wang, J.Y.; Wang, X. Characteristics of Dry and Wet Changes and Future Trends in the Tarim Evapotranspiration Index. Water 2024, 16, 880. [Google Scholar] [CrossRef]
- Ault, T.R. On the essentials of drought in a changing climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Hargreaves, G.H. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.S.; Han, C.T.; Liu, Z.W. Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China. Agric. Water Manag. 2021, 244, 106545. [Google Scholar] [CrossRef]
- Madsen, H.; Rosbjerg, D. On the modelling of extreme droughts. In IAHS Publications: Series of Proceedings and Reports; Intern Association Hydrological Sciences: Wallingford, UK, 1995; Volume 231, pp. 377–386. [Google Scholar]
- Nguyen, H.; Mehrotra, R.; Sharma, A. Assessment of climate change impacts on reservoir storage reliability, resilience, and vulnerability using a multivariate frequency bias correction approach. Water Resour. Res. 2020, 56, e2019WR026022. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Gupta, A. Development of a rainfall Stability Index using probabilistic indicators. Ecol. Indic. 2020, 115, 106406. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Zhou, L.; Zheng, W. Configuration and efficiency evaluation of the best management practices to control nitrogen loss in the watershed. Zhongguo Huanjing Kexue 2021, 41, 860. (In Chinese) [Google Scholar]
- Su, X.; Liang, X.; Wu, H.; Jiang, T.; Liu, Y.; Liu, X. Construction of comprehensive drought index representing ecological condition and drought risk analysis. Water Resour. Prot. 2023, 39, 50–58+100. (In Chinese) [Google Scholar]
- Wiegand, A.N.; Christopher, W.; Neil, T. A systematic approach for modelling quantitative lake ecosystem data to facilitate proactive urban lake management. Environ. Syst. Res. 2013, 2, 3. [Google Scholar] [CrossRef]
- Su, B.D.; Huang, J.L.; Fischer, T.; Wang, Y.J.; Kundzewicz, Z.W.; Zhai, J.Q.; Sun, H.M.; Wang, A.Q.; Zeng, X.F.; Wang, G.J.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.E.; Crausbay, S.D.; Rangwala, I.; Wason, J.W.; Trauernicht, C.; Stevens-Rumann, C.S.; Sala, A.; Rottler, C.M.; Pederson, G.T.; Miller, B.W.; et al. Drought as an emergent driver of ecological transformation in the twenty-first century. BioScience 2024, 74, 524–538. [Google Scholar] [CrossRef]
- Liu, M.; Trugman, A.T.; Peñuelas, J.; Anderegg, W.R.L. Climate-driven disturbances amplify forest drought sensitivity. Nat. Clim. Chang. 2024, 14, 746–752. [Google Scholar] [CrossRef]
- Polat, C.C.; Can, G.M. Meteorological and Agricultural Drought Risk Assessment via Kaplan–Meier Survivability Estimator. Agriculture 2024, 14, 503. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming. Environ. Res. Lett. 2019, 14, 064011. [Google Scholar] [CrossRef]
- UNISDR. Global Assessment Report on Disaster Risk Reduction 2019; UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2019. [Google Scholar]
- Felipe, A.J.B.; Alejo, L.A.; Balderama, O.F.; Rosete, E.A. Climate change intensifies the drought vulnerability of river basins: A case of the Magat River Basin. J. Water Clim. Chang. 2023, 14, 1012–1038. [Google Scholar] [CrossRef]
- Li, J.N.; Chou, J.M.; Zhao, W.X.; Xu, Y.; Hao, Y.D.; Li, Y.M. Future drought and flood vulnerability and risk prediction of China’s agroecosystem under climate change. Sustainability 2022, 14, 10069. [Google Scholar] [CrossRef]
- Mu, W.B.; Yu, F.L.; Han, Y.P.; Ma, W.X.; Zhao, Y. Meteorological drought risk in the Daqing River Basin, North China: Current observations and future projections. Stoch. Environ. Res. Risk Assess. 2020, 34, 1795–1811. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Y.H.; Li, S.J.; Li, W.Y.P.; Jin, X.L. Elevated CO2 concentrations contribute to a closer relationship between vegetation growth and water availability in the Northern Hemisphere mid-latitudes. Environ. Res. Lett. 2024, 19, 084013. [Google Scholar] [CrossRef]
- Yang, Y.T.; Roderick, M.L.; Zhang, S.L.; McVicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Chang. 2019, 9, 44–48. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M. Foreword: Drought complexity and assessment under climate change conditions. Cuad. Investig. Geográfica 2016, 42, 7–11. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Duan, R.; Huang, G.; Li, Y.; Zhou, X.; Ren, J.; Tian, C. Stepwise clustering future meteorological drought projection and multi-level factorial analysis under climate change: A case study of the Pearl River Basin, China. Environ. Res. 2021, 196, 110368. [Google Scholar] [CrossRef]
- Lanzante, J.R.; Dixon, K.W.; Nath, M.J.; Whitlock, C.E.; Adams-Smith, D. Some pitfalls in statistical downscaling of future climate. Bull. Am. Meteorol. Soc. 2018, 99, 791–803. [Google Scholar] [CrossRef]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Caya, D. Remaining error sources in bias-corrected climate model outputs. Clim. Chang. 2020, 162, 563–582. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Cross-validation of bias-corrected climate simulations is misleading. Hydrol. Earth Syst. Sci. 2018, 22, 4867–4873. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G. Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small. Water Resour. Res. 2012, 48, 9. [Google Scholar] [CrossRef]
Level | I | II | III | IV | V |
---|---|---|---|---|---|
Interval | [0.0, 0.2] | (0.2, 0.4] | (0.4, 0.6] | (0.6, 0.8] | (0.8, 1.0] |
Station | Station | ||||
---|---|---|---|---|---|
Bazhou | 0.00 | 0.14 | Raoyang | 0.11 | 0.10 |
Baoding | 0.13 | 0.09 | Tanggu | 0.34 | 0.12 |
Beijing | 0.18 | 0.19 | Tianjin | 0.14 | 0.19 |
Huailai | 0.01 | 0.11 | Laiyuan | 0.20 | 0.17 |
Lingqiu | 0.21 | 0.17 | Wutaishan | 0.23 | 0.17 |
Station | Before Pooling | After Pooling | After Excluding | ||||||
---|---|---|---|---|---|---|---|---|---|
Num | Num | Num | |||||||
Bazhou | 1.58 | 0.79 | 99 | 1.58 | 0.79 | 99 | 1.61 | 0.82 | 94 |
Baoding | 1.76 | 0.83 | 90 | 1.76 | 0.83 | 90 | 1.80 | 0.87 | 85 |
Beijing | 1.62 | 0.85 | 91 | 1.77 | 0.89 | 86 | 1.81 | 0.95 | 81 |
Huailai | 1.47 | 0.79 | 100 | 1.55 | 0.81 | 97 | 1.60 | 0.88 | 89 |
Lingqiu | 1.62 | 0.87 | 92 | 1.65 | 0.87 | 91 | 1.71 | 0.95 | 83 |
Raoyang | 1.41 | 0.75 | 104 | 1.59 | 0.78 | 98 | 1.62 | 0.81 | 93 |
Tanggu | 1.51 | 0.75 | 101 | 1.51 | 0.75 | 101 | 1.60 | 0.85 | 87 |
Tianjin | 1.61 | 0.77 | 99 | 1.61 | 0.77 | 99 | 1.72 | 0.90 | 81 |
Laiyuan | 1.56 | 0.84 | 94 | 1.68 | 0.87 | 90 | 1.85 | 1.08 | 71 |
Wutaishan | 1.67 | 0.93 | 86 | 1.77 | 0.96 | 83 | 1.95 | 1.19 | 66 |
Average | 1.58 | 0.82 | 96 | 1.65 | 0.83 | 93 | 1.73 | 0.93 | 83 |
Station | Obs | RCP4.5a | RCP4.5b | RCP8.5a | RCP8.5b | |||||
---|---|---|---|---|---|---|---|---|---|---|
De | Re | De | Re | De | Re | De | Re | De | Re | |
Bazhou | 0.27 | 0.34 | 0.64 | 0.58 | 0.68 | 0.60 | 0.45 | 0.50 | 0.73 | 0.48 |
Baoding | 0.36 | 0.44 | 0.69 | 0.67 | 0.87 | 0.46 | 0.43 | 0.65 | 0.31 | 0.46 |
Beijing | 0.51 | 0.31 | 0.97 | 0.73 | 0.82 | 0.73 | 0.69 | 0.90 | 0.47 | 0.84 |
Huailai | 0.38 | 0.21 | 1.14 | 0.97 | 1.12 | 1.01 | 0.96 | 0.73 | 0.89 | 0.69 |
Lingqiu | 0.35 | 0.36 | 0.41 | 0.93 | 0.65 | 0.93 | 0.35 | 0.91 | 0.52 | 0.72 |
Raoyang | 0.35 | 0.27 | 1.14 | 0.68 | 0.87 | 1.11 | 0.83 | 0.86 | 0.83 | 0.64 |
Tanggu | 0.30 | 0.30 | 0.94 | 0.86 | 1.18 | 0.63 | 0.90 | 0.88 | 0.84 | 0.69 |
Tianjin | 0.38 | 0.33 | 1.05 | 0.51 | 1.48 | 0.54 | 0.83 | 0.60 | 1.09 | 0.56 |
Laiyuan | 0.49 | 0.35 | 0.91 | 1.11 | 0.68 | 1.26 | 0.56 | 1.12 | 0.38 | 0.77 |
Wutaishan | 0.50 | 0.45 | 1.16 | 0.92 | 1.25 | 1.05 | 1.44 | 1.05 | 0.70 | 1.02 |
Average | 0.39 | 0.34 | 0.90 | 0.80 | 0.96 | 0.83 | 0.74 | 0.82 | 0.68 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Wang, Z. Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA. Agriculture 2024, 14, 1781. https://doi.org/10.3390/agriculture14101781
Lv M, Wang Z. Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA. Agriculture. 2024; 14(10):1781. https://doi.org/10.3390/agriculture14101781
Chicago/Turabian StyleLv, Mingcong, and Zhongmei Wang. 2024. "Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA" Agriculture 14, no. 10: 1781. https://doi.org/10.3390/agriculture14101781
APA StyleLv, M., & Wang, Z. (2024). Research on Meteorological Drought Risk Prediction in the Daqing River Basin Based on HADGEM3-RA. Agriculture, 14(10), 1781. https://doi.org/10.3390/agriculture14101781