A Review of the Application of the Laser-Light Backscattering Imaging Technique to Agricultural Products
Abstract
:1. Introduction
2. Concept of Backscattering Imaging
2.1. Wavelength Selection
2.2. Improvement of Signal-to-Noise Ratio
2.3. Light-Scattering Distortion
2.4. Segmentation of Images
2.5. Statistical Models
2.6. Deep Learning Models
Artificial Neural Network
3. Interaction of Photons with Biological Materials
3.1. Refractive Index
3.2. Absorption Coefficient
3.3. Scattering Coefficient
3.4. Reduced Scattering Coefficient
4. Analysis of Backscattering Images
Monte Carlo Simulation
5. Comparison of LLBI and Other Imaging Methods
6. Applications
6.1. Fruit Quality Inspection
6.2. Postharvest and Process Monitoring
6.3. Food Quality Control
7. Future Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, U.M.; Bidoglio, G.; Le Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Hencz, A.; Nguyen, L.L.P.; Baranyai, L.; Albanese, D. Assessment of wine adulteration using near infrared spectroscopy and laser backscattering imaging. Processes 2022, 10, 95. [Google Scholar] [CrossRef]
- Singhal, R.S.; Kulkarni, P.K.; Reg, D.V. Handbook of Indices of Food Quality and Authenticity; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Ruiz-Altisent, M.; Ruiz-Garcia, L.; Moreda, G.; Lu, R.; Hernandez-Sanchez, N.; Correa, E.; Diezma, B.; Nicolaï, B.; García-Ramos, J. Sensors for product characterization and quality of specialty crops—A review. Comput. Electron. Agric. 2010, 74, 176–194. [Google Scholar] [CrossRef]
- Choi, K.H.; Lee, K.J.; Kim, G. Nondestructive quality evaluation technology for fruits and vegetables using near-infrared spectroscopy. In Proceedings of the International Seminar on Enhancing Export Competitiveness of Asian Fruits, Bangkok, Thailand, 18–19 May 2006. [Google Scholar]
- Qin, J. Measurement of the Optical Properties of Horticultural and Food Products by Hyperspectral Imaging; Michigan State University, Department of Biosystems and Agricultural Engineering: East Lansing, MI, USA, 2007. [Google Scholar]
- Roberts, J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A short update on the advantages, applications and limitations of hyperspectral and chemical imaging in food authentication. Appl. Sci. 2018, 8, 505. [Google Scholar] [CrossRef]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Nor, M.Z.M. Laser-light backscattering imaging approach in monitoring and classifying the quality changes of sweet potatoes under different storage conditions. Postharvest Biol. Technol. 2020, 164, 111163. [Google Scholar] [CrossRef]
- Qing, Z.; Ji, B.; Zude, M. Non-destructive analysis of apple quality parameters by means of laser-induced light backscattering imaging. Postharvest Biol. Technol. 2008, 48, 215–222. [Google Scholar] [CrossRef]
- Lorente, D.; Zude, M.; Idler, C.; Gómez-Sanchís, J.; Blasco, J. Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model. J. Food Eng. 2015, 154, 76–85. [Google Scholar] [CrossRef]
- Mireei, S.A. Nondestructive Determination of Effective Parameters on Maturity of Mozafati Shahani Date Fruits by NIR Spectroscopy Technique. Ph.D. Thesis, Department of Mechanical Engineering of Agricultural Machinery, University of Tehran, Tehran, Iran, 2010. [Google Scholar]
- Zhang, J.X.; Hoshino, K.; Zhang, J.X.J.; Hoshino, K. Optical transducers: Optical molecular sensing and spectroscopy. Mol. Sens. Nanodev. 2019, 5, 231–309. [Google Scholar]
- Birth, G.S. The light scattering properties of foods. J. Food Sci. 1978, 43, 916–925. [Google Scholar] [CrossRef]
- McGlone, V.A.; Abe, H.; Kawano, S. Kiwifruit firmness by near infrared light scattering. J. Near Infrared Spectrosc. 1997, 5, 83–89. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M. Application and potential of backscattering imaging techniques in agricultural and food processing—A review. J. Food Eng. 2016, 169, 155–164. [Google Scholar] [CrossRef]
- Zulkifli, N.; Hashim, N.; Abdan, K.; Hanafi, M. Application of laser-induced backscattering imaging for predicting and classifying ripening stages of “Berangan” bananas. Comput. Electron. Agric. 2019, 160, 100–107. [Google Scholar] [CrossRef]
- Lu, R. Spectroscopic technique for measuring the texture of horticultural products: Spatially resolved. Opt. Monit. Fresh Process. Agric. Crops 2009, 450, 391. [Google Scholar]
- Lu, R. Quality evaluation of fruit by hyperspectral imaging. In Computer Vision Technology for Food Quality; Sun, D.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 319–348. [Google Scholar]
- Mollazade, K.; Omid, M.; Akhlaghian Tab, F.; Rezaei Kalaj, Y.; Mohtasebi, S.S. Data mining-based wavelength selection for monitoring quality of tomato fruit by backscattering and multispectral imaging. Int. J. Food Prop. 2015, 18, 880–896. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess Technol. 2015, 8, 31–40. [Google Scholar] [CrossRef]
- Firtha, F. Development of data reduction function for hyperspectral imaging. Prog. Agric. Eng. Sci. 2007, 3, 67–88. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Lu, R. Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biol. Technol. 2004, 31, 147–157. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Modeling multispectral scattering profiles for prediction of apple fruit firmness. Trans. ASAE 2005, 48, 235–242. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Determination of the optical properties of turbid materials by hyperspectral diffuse reflectance. In Proceedings of the 2005 ASAE Annual Meeting, Tampa, FL, USA, 17–20 July 2005; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Qin, J.; Lu, R. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials. Appl. Opt. 2006, 45, 8366–8373. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Peng, Y. Hyperspectral scattering for assessing peach fruit firmness. Biosyst. Eng. 2006, 93, 161–171. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl. Spectrosc. 2007, 61, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, R. Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biol. Technol. 2006, 41, 266–274. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
- Qing, Z.; Ji, B.; Zude, M. Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. J. Food Eng. 2007, 82, 58–67. [Google Scholar] [CrossRef]
- Baranyai, L.; Zude, M. Analysis of laser light propagation in kiwifruit using backscattering imaging and Monte Carlo simulation. Comput. Electron. Agric. 2009, 69, 33–39. [Google Scholar] [CrossRef]
- Nanda, M.A.; Rosalinda, S.; Budiarto, R.; Novianty, I.; Salim, T.I.; Purwandoko, P.B.; Al Riza, D.F. Implementation of laser-light backscattering imaging for authentication of the geographic origin of Indonesia region citrus. Smart Agric. Technol. 2024, 9, 100527. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Fundamentals of artificial neural networks and deep learning. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer: Berlin/Heidelberg, Germany, 2022; pp. 379–425. [Google Scholar]
- Noh, H.K.; Lu, R. Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biol. Technol. 2007, 43, 193–201. [Google Scholar] [CrossRef]
- Hussain, G.; Maheshwari, M.K.; Memon, M.L.; Jabbar, M.S.; Javed, K. A CNN-based automated activity and food recognition using wearable sensor for preventive healthcare. Electronics 2019, 8, 1425. [Google Scholar] [CrossRef]
- Verdú, S.; Barat, J.M.; Grau, R. Laser scattering imaging combined with CNNs to model the textural variability in a vegetable food tissue. J. Food Eng. 2023, 336, 111199. [Google Scholar] [CrossRef]
- Luo, N.; Xu, D.; Xing, B.; Yang, X.; Sun, C. Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review. J. Food Compos. Anal. 2024, 128, 105996. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Li, C.; Wu, J.; Yue, J. High performance vegetable classification from images based on alexnet deep learning model. Int. J. Agric. Biol. Eng. 2018, 11, 217–223. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Momeny, M.; Mahmoudi, M.; Zhang, Y.D. Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks. Sci. Hortic. 2020, 263, 109133. [Google Scholar] [CrossRef]
- Robert, H.N. Theory of the backpropagation neural network. In Neural Networks for Perception; Academic Press: Cambridge, MA, USA, 1992; Volume 2, pp. 65–93. [Google Scholar]
- Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res. Food Sci. 2021, 4, 233–249. [Google Scholar] [CrossRef]
- Wan, P.; Toudeshki, A.; Tan, H.; Ehsani, R. A methodology for fresh tomato maturity detection using computer vision. Comput. Electron. Agric. 2018, 146, 43–50. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, A.; Wang, X.; Zhang, H. Identification of grape diseases using image analysis and BP neural networks. Multimed. Tools Appl. 2020, 79, 14539–14551. [Google Scholar] [CrossRef]
- Lai, J.C.; Zhang, Y.Y.; Li, Z.H.; Jiang, H.J.; He, A.Z. Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry. Appl. Opt. 2010, 49, 3235–3238. [Google Scholar] [CrossRef]
- Tilley, R.J.D. Colour and the Optical Properties of Materials: An Exploration of the Relationship between Light, the Optical Properties of Materials and Colour; Wiley: Chichester, UK, 2011. [Google Scholar]
- Alali, S.; Ahmad, M.; Kim, A.; Vurgun, N.; Wood, M.F.; Vitkin, I.A. Quantitative correlation between light depolarization and transport albedo of various porcine tissues. J. Biomed. Opt. 2012, 17, 045004. [Google Scholar] [CrossRef]
- Cubeddu, R.; Pifferi, A.; Taroni, P.; Torricelli, A. Measuring fresh fruit and vegetable quality: Advanced optical methods. Fruit Veg. Process. Improv. Qual. 2002, 450, 388. [Google Scholar]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Zheng, C.; Sun, D.W.; Zheng, L. Recent applications of image texture for evaluation of food qualities—A review. Trends Food Sci. Technol. 2006, 17, 113–128. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Mohtasebi, S.S. Principles and applications of light backscattering imaging in quality evaluation of agro-food products: A review. Food Bioprocess Technol. 2012, 5, 1465–1485. [Google Scholar] [CrossRef]
- Cluff, K.; Konda Naganathan, G.; Subbiah, J.; Lu, R.; Calkins, C.R.; Samal, A. Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sens. Instrum. Food Qual. Saf. 2008, 2, 189–196. [Google Scholar] [CrossRef]
- Hashim, N.; Pflanz, M.; Regen, C.; Janius, R.B.; Rahman, R.A.; Osman, A.; Shitan, M.; Zude, M. An approach for monitoring the chilling injury appearance in bananas by means of backscattering imaging. J. Food Eng. 2013, 116, 28–36. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2008, 48, 52–62. [Google Scholar] [CrossRef]
- Mollazade, K.; Arefi, A. Optical analysis using monochromatic imaging-based spatially-resolved technique capable of detecting mealiness in apple fruit. Scientia Horticulturae 2017, 225, 589–598. [Google Scholar] [CrossRef]
- Farrell, T.J.; Patterson, M.S.; Wilson, B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 1992, 19, 879–888. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 2007, 82, 142–152. [Google Scholar] [CrossRef]
- Lorente, D.; Zude, M.; Regen, C.; Palou, L.; Gómez-Sanchís, J.; Blasco, J. Early decay detection in citrus fruit using laser-light backscattering imaging. Postharvest Biol. Technol. 2013, 86, 424–430. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Kalaj, Y.R.; Mohtasebi, S.S.; Zude, M. Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Comput. Electron. Agric. 2013, 98, 34–45. [Google Scholar] [CrossRef]
- Pavlin, M.; Jarm, T.; Miklavčič, D. Monte-Carlo Simulation of Light Transport for NIRS Measurements in Tumors of Elliptic Geometry; Springer: New York, NY, USA, 2003; pp. 41–49. [Google Scholar]
- Li, X.; Cheng, G.; Huang, N.; Wang, L.; Liu, F.; Gu, Y. Light distribution in intravascular low level laser therapy applying mathematical simulation: A comparative study. J. X-ray Sci. Technol. 2010, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jacques, S.L.; Zheng, L. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 1995, 47, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, M.; East, A.; Zude-Sasse, M. Understanding changes of laser backscattering imaging parameters through the kiwifruit softening process using time series analysis. N. Z. J. Crop Hortic. Sci. 2024, 52, 1–25. [Google Scholar] [CrossRef]
- Pathmanaban, P.; Gnanavel, B.K.; Anandan, S.S. Recent application of imaging techniques for fruit quality assessment. Trends Food Sci. Technol. 2019, 94, 32–42. [Google Scholar] [CrossRef]
- Yamashita, M.; Sasaki, H.; Moriyama, K. Vapor phase alkyne coating of pharmaceutical excipients: Discrimination enhancement of Raman chemical imaging for tablets. J. Pharm. Sci. 2015, 104, 4093–4098. [Google Scholar] [CrossRef]
- Suchanek, M.; Kordulska, M.; Olejniczak, Z.; Figiel, H.; Turek, K. Application of low-field MRI for quality assessment of ‘Conference’ pears stored under controlled atmosphere conditions. Postharvest Biol. Technol. 2017, 124, 100–106. [Google Scholar] [CrossRef]
- Teet, S.E.; Hashim, N. Recent advances of application of optical imaging techniques for disease detection in fruits and vegetables: A review. Food Control 2023, 152, 109849. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Dhakal, S.; Cho, B.K.; Lohumi, S.; Huang, M. Advances in Raman spectroscopy and imaging techniques for quality and safety inspection of horticultural products. Postharvest Biol. Technol. 2019, 149, 101–117. [Google Scholar] [CrossRef]
- Arefi, A.; Sturm, B.; Raut, S.; von Gersdorff, G.; Hensel, O. NIR laser-based imaging techniques to monitor quality attributes of apple slices during the drying process: Laser-light backscattering & biospeckle imaging techniques. Food Control 2023, 143, 109289. [Google Scholar]
- Ali, M.M.; Hashim, N.; Bejo, S.K.; Shamsudin, R. Quality evaluation of watermelon using laser-induced backscattering imaging during storage. Postharvest Biol. Technol. 2017, 123, 51–59. [Google Scholar]
- Lockman, N.A.; Hashim, N.; Onwude, D.I. Laser-Based imaging for Cocoa pods maturity detection. Food Bioprocess Technol. 2019, 12, 1928–1937. [Google Scholar] [CrossRef]
- Babazadeh, S.; Moghaddam, P.A.; Sabatyan, A.; Sharifian, F. Classification of potato tubers based on solanine toxicant using laser-induced light backscattering imaging. Comput. Electron. Agric. 2016, 129, 1–8. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Combination of computer vision and backscattering imaging for predicting the moisture content and colour changes of sweet potato (Ipomoea batatas L.) during drying. Comput. Electron. Agric. 2018, 150, 178–187. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Mahayothee, B.; Müller, J. Laser-based imaging system for non-invasive monitoring of quality changes of papaya during drying. Food Control 2014, 42, 225–233. [Google Scholar] [CrossRef]
- Mozaffari, M.; Sadeghi, S.; Asefi, N. Prediction of the quality properties and maturity of apricot by laser light backscattering imaging. Postharvest Biol. Technol. 2022, 186, 111842. [Google Scholar] [CrossRef]
- Tu, K.; Chen, Y.Y.; Ren, K.; Shao, X.F.; Dong, Q.L.; Pan, L.Q. Modeling apple quality changes based on laser scattering image analysis under simulated shelf life conditions. ISHS Acta Hortic. 2006, 712, 371–379. [Google Scholar] [CrossRef]
- Baranyai, L.; Regen, C.; Zude, M. Monitoring optical properties of apple tissue during cool storage. Proc. CIGR Workshop Image Anal. Agric. 2009, 69, 112–119. [Google Scholar]
- Romano, G.; Argyropoulos, D.; Gottschalk, K.; Cerruto, E.; Muller, J. Influence of colour changes and moisture content during banana drying on laser backscattering. Int. J. Agric. Biol. Eng. 2010, 3, 46–51. [Google Scholar]
- Romano, G.; Nagle, M.; Argyropoulos, D.; Muller, J. Laser light backscattering to monitor moisture content, soluble solid content, and hardness of apple tissue during drying. J. Food Eng. 2011, 104, 657–662. [Google Scholar] [CrossRef]
- Siyum, Z.H.; Pham, T.T.; Vozáry, E.; Kaszab, T.; Nguyen, L.L.P.; Baranyai, L. Monitoring of banana’s optical properties by laser light backscattering imaging technique during drying. J. Food Meas. Charact. 2023, 17, 5268–5287. [Google Scholar] [CrossRef]
- Brosnan, T.; Sun, D.W. Improving quality inspection of food products by computer vision—A review. J. Food Eng. 2004, 61, 3–16. [Google Scholar] [CrossRef]
- Pham, T.T.; Baranyai, L.; Dam, M.S.; Ha, N.T.T.; Nguyen, L.L.P.; Varga-Tóth, A.; Németh, C.; Friedrich, L. Evaluation of shelf life of egg treated with edible coating by means of NIR spectroscopy and laser induced diffuse reflectance imaging. J. Food Eng. 2023, 358, 111688. [Google Scholar] [CrossRef]
Reference | Product | Wavelength (nm) | Calibration Model * | Results |
---|---|---|---|---|
Arefi et al. [70] | Apple slides | 635, 980, and 1450 | GPR and PLSR | The GPR models at 980 nm provided the most accurate predictions of quality changes in apple slices during the drying process. Predictions for moisture content achieved an R2 value of 0.92; vitamin C had an R2 of 0.79, and the SSC reached an R2 value of 0.88. |
Ali et al. [71] | Watermelon | 658 | PLSR | Predicting the changes in firmness, SSC, pH, and moisture. The R2 for quality prediction ranged from 0.88 to 0.94. |
Lockman et al. [72] | Cocoa pods | 658 and 705 | MLR | The prediction of cocoa fruit ripeness at 705 nm obtained an R2 value of 0.65 for hardness and 0.80 for chroma. Additionally, the 705 nm wavelength demonstrated outstanding classification performance, achieving 95% accuracy in categorizing samples based on their maturity level. |
Babazadeh et al. [73] | Potato | 532 and 635 | ANN | Combining LLBI with the ANN method could successfully classify potato cultivars with an accuracy exceeding 90%. Moreover, the method achieved over 98% accuracy in distinguishing between healthy and toxic potatoes. |
Qing et al. [9] | Apple | 600–1100 | PLSR and SMLR | The assessment of apple fruit development focused on the SSC and firmness. The PLSR prediction model demonstrated the highest R2 value, exceeding 0.88. Wavelengths around 780 and 880 nm were found to provide important information related to the SSC and firmness of apple. |
Zulkifli et al. [17] | Banana | 658 | MLR | The mean intensity values and cross-sectional area were reliable for assessing the changes in the physicochemical properties of banana during ripening. The classification of unripe and ripe bananas reached an accuracy of 94.2% |
Nanda et al. [34] | Citrus fruit | 450, 532, and 648 nm | - | The combination of the gray-level co-occurrence matrix method and the support vector machine algorithm was used to extract texture features and to develop a classification model. The proposed approach reached an accuracy of 96.667% for authenticating the geographic origin. |
Yang et al. [64] | Kiwifruit | 830 | LR | The prediction of kiwifruit flesh firmness during storage showed great accuracy, with R2 values greater than 0.9 for both the ”Zesy002” and ”Hayward” cultivars. |
Onwude et al. [74] | Sweet potato | 658 | PLSR | Good correlation was obtained with the moisture content and color properties of sweet potato during drying, achieving an R2 > 0.7. |
Udomkun et al. [75] | Papaya | 532, 650 and 780 | MLR | The model at 650 nm provided the best fit for changes in papaya during the drying process, including those affecting the moisture content, shrinkage, and color. Applying MLR based on the illuminated area and light intensity parameters provided the most accurate models for predicting all quality attributes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.T.; Nguyen, T.B.; Dam, M.S.; Nguyen, L.L.P.; Baranyai, L. A Review of the Application of the Laser-Light Backscattering Imaging Technique to Agricultural Products. Agriculture 2024, 14, 1782. https://doi.org/10.3390/agriculture14101782
Pham TT, Nguyen TB, Dam MS, Nguyen LLP, Baranyai L. A Review of the Application of the Laser-Light Backscattering Imaging Technique to Agricultural Products. Agriculture. 2024; 14(10):1782. https://doi.org/10.3390/agriculture14101782
Chicago/Turabian StylePham, Thanh Tung, Thanh Ba Nguyen, Mai Sao Dam, Lien Le Phuong Nguyen, and László Baranyai. 2024. "A Review of the Application of the Laser-Light Backscattering Imaging Technique to Agricultural Products" Agriculture 14, no. 10: 1782. https://doi.org/10.3390/agriculture14101782
APA StylePham, T. T., Nguyen, T. B., Dam, M. S., Nguyen, L. L. P., & Baranyai, L. (2024). A Review of the Application of the Laser-Light Backscattering Imaging Technique to Agricultural Products. Agriculture, 14(10), 1782. https://doi.org/10.3390/agriculture14101782