Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Material
2.3. Experimental Design
2.4. Sampling Method
2.5. Root Exudation Analysis
2.6. Extraction, Sequencing, and Bioinformatics Analysis of Soil Total DNA
2.7. Statistical Analysis
3. Results
3.1. The Difference Between C. canephora cv. Robusta and Coffea Liberica Root Exudates Under Grafting Treatments
3.2. The Difference Between C. canephora cv. Robusta and Coffea Liberica Rhizosphere Soil Microbial Diversity Under Grafting Treatments
3.3. The Difference Between C. canephora cv. Robusta and Coffea Liberica Rhizosphere Soil Microbial Composition of Dominant Genera Under Grafting Treatments
3.4. The Difference Between C. canephora cv. Robusta and Coffea Liberica Rhizosphere Soil Microbial Function Under Grafting Treatments
3.5. The Correlation Between Coffee Rhizosphere Soil Microbial Diversity and Root Exudates
3.6. The Correlation Between Coffee Rhizosphere Soil Microbial Composition of Dominant Genera and Root Exudates
4. Discussion
4.1. Effects of Different Grafting Treatments on C. canephora cv. Robusta and Coffea Liberica Root Exudates
4.2. Effects of Different Grafting Treatments on C. canephora cv. Robusta and Coffea Liberica Rhizosphere Soil Microbial Diversity and Structure
4.3. Effects of Different Grafting Treatments on C. canephora cv. Robusta and Coffea Liberica Rhizosphere Soil Microbial Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef]
- Moat, J.; Williams, J.; Baena, S.; Wilkinson, T.; Gole, T.W.; Challa, Z.K.; Demissew, S.; Davis, A.P. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 2017, 3, 17081. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, Z.; Lashermes, P. Protecting the origins of coffee to safeguard its future. Nat. Plants 2017, 3, 16209. [Google Scholar] [CrossRef] [PubMed]
- Ratchawat, T.; Panyatona, S.; Nopchinwong, P.; Chidthaisong, A.; Chiarakorn, S. Carbon and water footprint of Robusta coffee through its production chains in Thailand. Environ. Dev. Sustain. 2020, 22, 2415–2429. [Google Scholar] [CrossRef]
- Mai, T.C.; Shakur, S.; Cassells, S. Testing vertical price transmission for Vietnam’s Robusta coffee. Aust. J. Agric. Resour. Econ. 2018, 62, 563–575. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, W.; Xing, Y.; Sun, Y.; Lin, X.; Dong, Y. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 2018, 8, 6111–6116. [Google Scholar] [CrossRef]
- Gillison, A.N.; Liswanti, N.; Budidarsono, S.; van Noordwijk, M.; Tomich, T.P. Impact of Cropping Methods on Biodiversity in Coffee Agroecosystems in Sumatra, Indonesia. Ecol. Soc. 2004, 9, 7. [Google Scholar] [CrossRef]
- Barros, A.F.; Oliveira, R.D.L.; Lima, I.M.; Coutinho, R.R.; Ferreira, A.O.; Costa, A. Root-knot nematodes, a growing problem for Conilon coffee in Espírito Santo state, Brazil. Crop Prot. 2014, 55, 74–79. [Google Scholar] [CrossRef]
- Maundu, J.N.; Kimenju, J.W.; Muiru, W.M.; Wachira, M.P.; Gichuru, K.E. Plant Parasitic Nematodes Associated with Coffee in Kenya and Factors Influencing their Occurrence, Abundance and Diversity. J. Biol. Agric. Healthc. 2014, 4, 120–129. [Google Scholar]
- Musoli, C.P.; Pinard, F.; Charrier, A.; Kangire, A.; Ten Hoopen, G.M.; Kabole, C.; Ogwang, J.; Bieysse, D.; Cilas, C. Spatial and temporal analysis of coffee wilt disease caused by Fusarium xylarioides in Coffea canephora. Eur. J. Plant Pathol. 2008, 122, 451–460. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, A.; Zhao, Q.; Dong, Y.; Su, L.; Sun, Y.; Zhu, F.; Hua, D.; Xiong, W. The impact of main Areca Catechu root exudates on soil microbial community structure and function in coffee plantation soils. Front. Microbiol. 2023, 14, 1257164. [Google Scholar] [CrossRef] [PubMed]
- Velmourougane, K.; Comi, G. Impact of Organic and Conventional Systems of Coffee Farming on Soil Properties and Culturable Microbial Diversity. Scientifica 2016, 2016, 3604026. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, E.E. Plant grafting: New mechanisms, evolutionary implications. Front. Plant Sci. 2014, 5, 727. [Google Scholar] [CrossRef]
- Deng, W.; Han, J.; Fan, Y.; Tai, Y.; Zhu, B.; Lu, M.; Wang, R.; Wan, X.; Zhang, Z. Uncovering tea-specific secondary metabolism using transcriptomic and metabolomic analyses in grafts of Camellia sinensis and C. oleifera. Tree Genet. Genomes 2018, 14, 23. [Google Scholar] [CrossRef]
- Wang, X.; Whalley, W.R.; Miller, A.J.; White, P.J.; Zhang, F.; Shen, J. Sustainable Cropping Requires Adaptation to a Heterogeneous Rhizosphere. Trends Plant Sci. 2020, 25, 1194–1202. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, X.; Wang, J.; Shao, J.; Fu, Y.; Liang, C.; Yan, E.; Chen, X.; Wang, X.; Bai, S.H. Differential magnitude of rhizosphere effects on soil aggregation at three stages of subtropical secondary forest successions. Plant Soil 2019, 436, 365–380. [Google Scholar] [CrossRef]
- Demenois, J.; Rey, F.; Ibanez, T.; Stokes, A.; Carriconde, F. Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient. Plant Soil 2018, 424, 319–334. [Google Scholar] [CrossRef]
- Nakano, M.; Mukaihara, T. Ralstonia solanacearum Type III Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants. Plant Cell Physiol. 2018, 59, 2576–2589. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, V.; Singh, N.B.; Hussain, I.; Singh, H. Putrescine affects tomato growth and response of antioxidant defense system due to exposure to cinnamic acid. Int. J. Veg. Sci. 2018, 25, 259–277. [Google Scholar]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A.; et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef]
- Xin, A.; Li, X.; Jin, H.; Yang, X.; Zhao, R.; Liu, J.; Qin, B. The accumulation of reactive oxygen species in root tips caused by autotoxic allelochemicals—A significant factor for replant problem of Angelica sinensis (Oliv.) Diels. Ind. Crop. Prod. 2019, 138, 111432. [Google Scholar] [CrossRef]
- Kong, C.H.; Wang, P.; Zhao, H.; Xu, X.H.; Zhu, Y.D. Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil. Biol. Biochem. 2008, 40, 1862–1869. [Google Scholar] [CrossRef]
- Bagyaraj, D.J.; Thilagar, G.; Ravisha, C.; Kushalappa, C.G.; Krishnamurthy, K.N.; Vaast, P. Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agric. Ecosyst. Environ. 2015, 202, 198–202. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Yao, S.; Yang, X.; Jiang, X. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation. Sci. Total Environ. 2020, 728, 138439. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Geng, B.; Li, M.; Li, Z.; Liu, X.; Guo, H. Comprehensive analysis of environmental factors mediated microbial community succession in nitrogen conversion and utilization of ex situ fermentation system. Sci. Total Environ. 2021, 769, 145219. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Zhao, S.G.; Zhang, A.; Zhao, Q.; Zhang, Y.; Wang, D.; Su, L.; Lin, X.; Sun, Y.; Yan, L.; Wang, X.; et al. Effects of coffee pericarp and litter mulsching on soil microbiomes diversity and functions in a tropical coffee plantation, South China. Front. Microbiol. 2024, 14, 1323902. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, A.; Qin, X.; Yu, H.; Ji, X.; He, S.; Zong, Y.; Wang, J.; Tang, J. Effects of intercropping Pandanus amaryllifolius on soil properties and microbial community composition in Areca catechu plantations. Forests 2022, 13, 1814. [Google Scholar] [CrossRef]
- Davis, A.P.; Kiwuka, C.; Faruk, A.; Walubiri, M.J.; Kalema, J. The re-emergence of Liberica coffee as a major crop plant. Nat. Plants 2022, 8, 1322–1328. [Google Scholar] [CrossRef]
- Surya Prakash, N.; Devasia, J.; Raghuramulu, Y.; Aggarwal, R.K. Genetic Diversity and Coffee Improvement in India; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Praxedes, S.C.; DaMatta, F.M.; Loureiro, M.E.; Ferrão, M.A.G.; Cordeiro, A.T. Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature Robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ. Exp. Bot. 2006, 56, 263–273. [Google Scholar] [CrossRef]
- Wang, Y. Plant grafting and its application in biological research. Chin. Sci. Bull. 2011, 56, 3511–3517. [Google Scholar] [CrossRef]
- Koepke, T.; Dhingra, A. Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep. 2013, 32, 1321–1337. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, J.; Kumar, A.; Chaudhury, A.; Singh, S.P. Grafting Triggers Differential Responses between Scion and Rootstock. PLoS ONE 2015, 10, e124438. [Google Scholar] [CrossRef]
- Chen, X.; Guo, P.; Wang, Z.; Liang, J.; Li, G.; He, W.; Zhen, A. Grafting improves growth and nitrogen-use efficiency by enhancing NO3− uptake, photosynthesis, and gene expression of nitrate transporters and nitrogen metabolizing enzymes in watermelon under reduced nitrogen application. Plant Soil. 2022, 480, 305–327. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; Rocha, U.N.D.; Shi, S.; Cho, H.; Karaoz, U.; Loque, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gomez-Cadenas, A.; Perez-Clemente, R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- Liu, H.; Pan, F.; Han, X.; Song, F.; Zhang, Z.; Yan, J.; Xu, Y. Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 2019, 9, 3316. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Kang, F.; Yan, X.; Sun, L.; Wang, N.; Gong, Y.; Gao, X.; Huang, L. Microbial diversity composition of apple tree roots and resistance of apple Valsa canker with different grafting rootstock types. BMC Microbiol. 2022, 22, 148. [Google Scholar] [CrossRef]
- Lailheugue, V.; Darriaut, R.; Tran, J.; Morel, M.; Marguerit, E.; Lauvergeat, V. Both the scion and rootstock of grafted grapevines influence the rhizosphere and root endophyte microbiomes, but rootstocks have a greater impact. Environ. Microbiome 2024, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Hortic. 2009, 123, 139–147. [Google Scholar] [CrossRef]
- Ling, N.; Song, Y.; Raza, W.; Huang, Q.; Guo, S.; Shen, Q. The response of root-associated bacterial community to the grafting of watermelon. Plant Soil 2015, 391, 253–264. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Z.; Feng, X.; Wang, M.; Luo, Y.; Wang, Y.; Xu, P. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. Sci. Total Environ. 2022, 837, 155801. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, L.; Wang, J.; Zhang, Y.; Xiao, C. Effects of warming on the bacterial community and its function in a temperate steppe. Sci. Total Environ. 2021, 792, 148409. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, Y.; Liang, X.; Gao, L. Effects of single-root-grafting, double-root-grafting and compost application on microbial properties of rhizosphere soils in Chinese protected cucumber (Cucumis sativus L.) production systems. Sci. Hortic. 2015, 186, 190–200. [Google Scholar] [CrossRef]
- Liu, J.; Abdelfattah, A.; Norelli, J.; Burchard, E.; Schena, L.; Droby, S.; Wisniewski, M. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome 2018, 6, 18. [Google Scholar] [CrossRef]
- Lu, X.; Liu, W.; Wang, T.; Zhang, J.; Li, X.; Zhang, W. Systemic long-distance signaling and communication between rootstock and scion in grafted vegetables. Front. Plant Sci. 2020, 11, 460. [Google Scholar] [CrossRef]
- Miao, L.; Li, S.; Bai, L.; Ali, A.; Li, Y.; He, C.; Yu, X. Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Sci. Hortic. 2019, 244, 249–256. [Google Scholar] [CrossRef]
Treatments | Alkaloids and Derivatives | Benzenoids | Homogeneous Non-Metal Compounds | Hydrocarbons | Lignans, Neolignans, and Related Compounds | Lipids and Lipid-like Molecules | Nucleosides, Nucleotides, and Analogs | Organic Acids and Derivatives |
---|---|---|---|---|---|---|---|---|
S | 0.74 | 40.91 ** | 3.57 | 5.70 * | 66.21 ** | 1.56 | 0.96 | 32.18 ** |
C | 0.15 | 5.12 * | 5.57 ** | 0.05 | 17.97 ** | 5.89 ** | 2.02 | 11.42 ** |
S × C | 0.29 | 8.88 ** | 0.14 | 1.45 | 0.73 | 4.21 * | 0.96 | 2.96 |
Organic Compounds | Organic Nitrogen Compounds | Organic Oxygen Compounds | Organohalogen Compounds | Organoheterocyclic Compounds | Organonitrogen Compounds | Organooxygen Compounds | Organosulfur Compounds | Phenylpropanoids and Polyketides |
9.88 ** | 0.11 | 35.6 6 ** | 19.93 ** | 26.47 ** | 8.76 ** | 81.69 ** | 1.29 | 8.93 ** |
6.95 ** | 0.62 | 12.07 *** | 4.11 * | 8.89 ** | 2.98 | 12.17 ** | 6.37 ** | 14.45 ** |
1.1 | 0.04 | 3.13 | 0.08 | 1.86 | 0.11 | 6.71 ** | 0.56 | 6.96 ** |
Treatments | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|
Richness | Shannon | Pielou | Richness | Shannon | Pielou | |
S | 5.38 * | 4.97 * | 1.22 | 4.36 * | 5.56 * | 0.36 |
C | 1.43 | 2.17 | 2.84 | 6.04 ** | 5.33 ** | 1.52 |
S × C | 0.96 | 0.74 | 0.41 | 0.5 | 0.89 | 1.6 |
Taxon | Genus Name | S | C | S × C |
---|---|---|---|---|
Bacteria | Vicinamibacteraceae | 40.05 *** | 14.02 *** | 5.12 ** |
Vicinamibacterales | 38.41 *** | 19.39 *** | 19.41 *** | |
Rokubacteriales | 8.97 ** | 34.73 *** | 5.63 ** | |
Gaiella | 86.19 *** | 1.34 | 7.19 ** | |
Gaiellales | 55.47 *** | 5.27 ** | 14.86 *** | |
Subgroup | 34.46 *** | 7.63 ** | 1.76 | |
Gemmatimonadaceae | 107.91 *** | 7.71 ** | 71.31 *** | |
Xanthobacteraceae | 11.93 ** | 11.40 *** | 4.15 * | |
Proteobacteria | 30.04 *** | 2.63 | 22.02 *** | |
Actinobacteriota | 13.62 *** | 0.07 | 0.73 | |
Pedomicrobium | 0.01 | 16.36 *** | 18.63 *** | |
RB41 | 0.08 | 9.81 | 4.67 | |
MND1 | 117.68 *** | 22.78 *** | 26.88 *** | |
KD4-96 | 21.24 *** | 54.19 *** | 19.50 *** | |
MB-A2-108 | 51.31 *** | 15.26 *** | 5.77 ** | |
Haliangium | 15.41 *** | 3.64 * | 1.08 | |
Acidobacteriota | 2.77 | 10.41 *** | 1.48 | |
Gemmatimonadota | 5.72 * | 2.88 | 15.64 *** | |
Nitrospira | 54.67 *** | 10.25 *** | 4.54 * | |
Gemmatimonas | 0.01 | 20.17 *** | 17.05 *** | |
SC-I-84 | 6.07 * | 19.71 *** | 2.66 | |
IMCC26256 | 15.02 *** | 3.08 | 14.49 *** | |
Roseiflexaceae | 10.96 ** | 8.81 *** | 8.97 *** | |
Gemmataceae | 0.04 | 0.67 | 0.19 | |
TK10 | 0.05 | 36.61 *** | 1.10 | |
Candidatus | 1.77 | 18.02 *** | 15.95 *** | |
Solirubrobacter | 7.77 ** | 7.49 ** | 14.86 *** | |
Fungi | Ascomycota_unclassified | 43.97 *** | 1.61 | 19.01 *** |
Haematonectria | 11.04 ** | 0.46 | 0.76 | |
Thermomyces | 1.63 | 1.41 | 0.89 | |
Actinomucor | 1.30 | 1.85 | 0.21 | |
Chaetomiaceae_unclassified | 5.80 * | 3.45 * | 1.40 | |
Myrothecium | 1.07 | 1.40 | 3.24 * | |
Hypocrea | 6.25 * | 0.37 | 0.40 | |
Chaetomium | 2.53 | 3.14 | 2.29 | |
Agaricomycetes_unclassified | 4.77 * | 1.65 | 1.46 | |
Cochliobolus | 17.06 *** | 14.16 *** | 22.03 *** | |
Nectriaceae_unclassified | 0.83 | 0.94 | 1.30 | |
Sordariomycetes_unclassified | 3.24 | 9.84 *** | 4.04 * | |
Hypocreales | 0.33 | 5.21 ** | 0.84 | |
Preussia | 6.21 * | 6.05 ** | 5.54 ** |
Taxon | Predicted Function | S | C | S × C |
---|---|---|---|---|
Bacteria | Chemoheterotrophy | 1.17 | 6.10 ** | 2.49 |
Nitrate reduction | 4.37 * | 0.15 | 14.75 *** | |
Denitrification | 1.13 | 16.76 *** | 2.64 | |
Photoautotrophy | 1.04 | 16.58 *** | 2.67 | |
Parasites | 17.93 *** | 3.55 * | 0.22 | |
Degradation | 1.21 | 5.97 ** | 1.46 | |
Fermentation | 0.01 | 24.73 *** | 2.75 | |
Nitrogen fixation | 0.02 | 5.33 ** | 2.76 | |
Human pathogen | 1.52 | 0.90 | 4.16 * | |
Fungi | Saprotroph | 0.03 | 4.17 * | 0.58 |
Pathogen | 0.01 | 0.86 | 0.54 | |
Endophyte | 0.05 | 1.89 | 0.77 | |
Epiphyte | 0.37 | 1.22 | 3.33 * | |
Parasite | 0.7 | 1.74 | 0.3 | |
Arbuscular mycorrhizal | 15.10 *** | 5.08 * | 3.41 * | |
Ectomycorrhizal | 0.32 | 2.80 | 0.89 | |
Endomycorrhizal | 1.34 | 2.15 | 1.61 |
Network Metrics | Source |
---|---|
Number of nodes | 58 |
Number of edges | 710 |
Number of positive correlations | 373 |
Number of negative correlations | 337 |
Percentage of the positive link (p%) | 52.54% |
p% from coffee rhizosphere to dominant bacterial genera | 41.50% |
p% from coffee rhizosphere to dominant fungal genera | 35.71% |
p% from dominant bacterial genera to fungal genera | 50.83% |
p% among dominant bacterial genera | 48.56% |
p% among dominant fungal genera | 35.71% |
Average connectivity (avgK) | 12.03 |
Average clustering coefficient (avgCC) | 0.211 |
Average path length (APL) | 4.738 |
Graph density | 0.508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yan, L.; Zhang, A.; Yang, J.; Zhao, Q.; Lin, X.; Zhang, Z.; Huang, L.; Wang, X.; Wang, X. Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome. Agriculture 2024, 14, 1854. https://doi.org/10.3390/agriculture14101854
Sun Y, Yan L, Zhang A, Yang J, Zhao Q, Lin X, Zhang Z, Huang L, Wang X, Wang X. Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome. Agriculture. 2024; 14(10):1854. https://doi.org/10.3390/agriculture14101854
Chicago/Turabian StyleSun, Yan, Lin Yan, Ang Zhang, Jianfeng Yang, Qingyun Zhao, Xingjun Lin, Zixiao Zhang, Lifang Huang, Xiao Wang, and Xiaoyang Wang. 2024. "Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome" Agriculture 14, no. 10: 1854. https://doi.org/10.3390/agriculture14101854
APA StyleSun, Y., Yan, L., Zhang, A., Yang, J., Zhao, Q., Lin, X., Zhang, Z., Huang, L., Wang, X., & Wang, X. (2024). Effects of Grafting on the Structure and Function of Coffee Rhizosphere Microbiome. Agriculture, 14(10), 1854. https://doi.org/10.3390/agriculture14101854