Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fresh and Lacto-Fermented Yellow and Red Pepper Samples
2.2. Image Acquisition and Processing
2.3. Classification Model Development
3. Results
3.1. The Classification of Red Bell Pepper Samples Before and After Various Periods of Lacto-Fermentation
3.2. The Classification of Yellow Bell Pepper Samples Before and After Various Periods of Lacto-Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, H.C.A.; de Lima, J.A.; Da Silva, A.L.P.; De Castro, G.L.S.; Gomes, R.F. Yield of fertigated bell pepper under different soil water tensions and nitrogen fertilization. Rev. Caatinga 2020, 33, 172–183. [Google Scholar] [CrossRef]
- Buczkowska, H. Evaluation of yielding of Polish sweet pepper cultivars in the field cultivation in the aspect of breeding progress. In Progress in Research on Capsicum & Eggplant; Katarzyna, N.-S., Ed.; Warsaw University of Life Sciences Press: Warsaw, Poland, 2007; pp. 257–265. [Google Scholar]
- Alam, M.S.; Saha, S.R.; Salam, M.A.; Alam, M.S.; Alam, M.K. Effect of sowing time and plant spacing on the yield attributes of sweet pepper (Capsicum annuum L.). Bangladesh J. Agril. Res. 2011, 36, 271–278. [Google Scholar] [CrossRef]
- Pramanik, K.; Mohapatra, P.P.; Pradhan, J.; Acharya, L.K.; Jena, C. Factors influencing performance of capsicum under protected cultivation: A review. Int. J. Environ. Clim. Chang. 2020, 10, 572–588. [Google Scholar] [CrossRef]
- Deepa, N.; Kaur, C.; Singh, B.; Kapoor, H.C. Antioxidant activity in some red sweet pepper cultivars. J. Food Compos. Anal. 2006, 19, 572–578. [Google Scholar] [CrossRef]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Z.; Wu, C.T. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, S98–S102. [Google Scholar] [CrossRef] [PubMed]
- Shotorbani, N.Y.; Jamei, R.; Haidari, R. Antioxidant activities of two sweet pepper Capsicum annuum L. varieties phenolic extracts and the effects of thermal treatment. Avicenna J. Phytomedicine 2013, 3, 25–34. [Google Scholar]
- Kim, J.S.; An, G.C.; Park, J.S.; Lim, Y.P.; Kim, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef]
- Zou, L.; Tan, W.K.; Du, Y.; Lee, H.W.; Liang, X.; Lei, J.; Striegel, L.; Weber, N.; Rychlik, M.; Ong, C.N. Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages, Microgreen, seedling and adult plant. Food Chem. 2021, 357, 129535. [Google Scholar] [CrossRef]
- Jackson, R.S. Chapter 7—Fermentation. In Wine Science, 5th ed.; Jackson, R.S., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 461–572. [Google Scholar]
- Sip, A.; Krasowska, M.; Więckowicz, M.; Grajek, W. Metody skriningu bakteriocynogennych bakterii fermentacji mlekowej. Żywność. Nauka. Technol. Jakość 2009, 16, 5–26. [Google Scholar]
- Goderska, K.; Rychlik, T.; Andrzejewska, E.; Szkaradkiewicz, A.; Czarnecki, A. Antagonistyczny wpływ Lactobacillus acidophilus DSM 20079 i DSM 20242 na bakterie patogenne izolowane od ludzi. Żywność. Nauka. Technol. Jakość 2012, 3, 114–131. [Google Scholar]
- Karwowska, K.K.; Kaczmarczyk, D. Rola i znaczenie produktów fermentowanych w diecie. Med. Ogólna I Nauk. O Zdrowiu 2023, 29, 79–88. [Google Scholar] [CrossRef]
- Baruah, R.; Ray, M.; Halami, P.M. Preventive and therapeutic aspects of fermented foods. J. Appl. Microbiol. 2022, 132, 3476–3489. [Google Scholar] [CrossRef] [PubMed]
- Thierry, A.; Baty, C.; Marché, L.; Chaut, V.; Picard, O.; Lortal, S.; Valance, F. Lactofermentation of vegetables: An ancient method of preservation matching new trends. Trends Food Sci. Technol. 2023, 139, 104112. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D.; Rybka, K.; Rolof, J.; Pobiega, K.; Woźniak, Ł.; Gramza-Michałowska, A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022, 27, 8637. [Google Scholar] [CrossRef]
- Blanco-Ríos, A.K.; Medina-Juarez, L.A.; Gonzalez-Aguilar, G.A.; Gamez-Meza, N. Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. J. Mex. Chem. Soc. 2013, 57, 137–143. [Google Scholar] [CrossRef]
- Althaus, B.; Blanke, M. Non-destructive, opto-electronic determination of the freshness and shrivel of Bell pepper fruits. J. Imaging 2020, 6, 122. [Google Scholar] [CrossRef]
- Alberto, M.R.; Perera, F.; Arena, M. Lactic Acid Fermentation of Peppers. Nutr. Sci. 2012, 04, 7–52. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, N.; Huang, J.; Gu, B.; Zhou, J. Computer Vision Estimation of the Volume and Weight of Apples by Using 3D Reconstruction and Noncontact Measuring Methods. J. Sens. 2020, 2020, 5053407. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. The effect of lacto-fermentation over time on the changes in zucchini flesh quality assessed using machine learning models based on image textures. J. Food Process Eng. 2023, 46, e14496. [Google Scholar] [CrossRef]
- Ropelewska, E. Distinguishing lacto-fermented and fresh carrot slice images using the Multilayer Perceptron neural network and other machine learning algorithms from the groups of Functions, Meta, Trees, Lazy, Bayes and Rules. Eur. Food Res. Technol. 2022, 248, 2421–2429. [Google Scholar] [CrossRef]
- Anggraini, C.D.; Putranto, A.W.; Iqbal, Z.; Firmanto, H.; Riza, D.F.A. Preliminary study on development of cocoa beans fermentation level measurement based on computer vision and artificial intelligence. In Proceedings of the 2021 International Conference on Green Agro-Industry and Bioeconomy, Malang, Indonesia, 6–7 July 2021; 924 of IOP Conference Series, Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; pp. 1–8. [Google Scholar]
- Oliveira, M.M.; Cerqueira, B.V.; Barbon, S., Jr.; Barbin, D.F. Classification of fermented cocoa beans (cut test) using computer vision. J. Food Compos. Anal. 2021, 97, 103771. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A.; Goyal, V.; Shukla, A. Machine learning & computer vision-based optimum black tea fermentation detection. Multimed. Tools Appl. 2023, 82, 43335–43347. [Google Scholar]
- Zhu, H.K.; Liu, F.; Ye, Y.; Chen, L.; Liu, J.Y.; Gui, A.H.; Zhang, J.; Dong, C. Application of machine learning algorithms in quality assurance of fermentation process of black tea-based on electrical properties. J. Food Eng. 2019, 263, 165–172. [Google Scholar] [CrossRef]
- Strzelecki, M.; Szczypiński, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda-a software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Republic of Korea, 23–24 November 2007; pp. 245–249. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. In Online Appendix for Data Mining, Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining, Practical Machine Learning Tools and Techniques, 525, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Ropelewska, E. Diversity of Plum Stones Based on Image Texture Parameters and Machine Learning Algorithms. Agronomy 2022, 12, 762. [Google Scholar] [CrossRef]
- Ropelewska, E.; Cai, X.; Zhang, Z.; Sabanci, K.; Aslan, M.F. Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum (Prunus domestica L.) Kernels. Agriculture 2022, 12, 285. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rady, A.M.; Watson, N.J. Apricot Stone Classification Using Image Analysis and Machine Learning. Sustainability 2023, 15, 9259. [Google Scholar] [CrossRef]
- Unlersen, M.F.; Sonmez, M.E.; Aslan, M.F.; Demir, B.; Aydin, N.; Sabanci, K.; Ropelewska, E. CNN–SVM hybrid model for varietal classification of wheat based on bulk samples. Eur. Food Res. Technol. 2022, 248, 2043–2052. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods—A review. Int. Online J. Image Process. Pattern Recogn. 2019, 2, 1–29. [Google Scholar]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. The Changes in Bell Pepper Flesh as a Result of Lacto-Fermentation Evaluated Using Image Features and Machine Learning. Foods 2022, 11, 2956. [Google Scholar] [CrossRef] [PubMed]
- Ropelewska, E.; Wrzodak, A. The Use of Image Analysis and Sensory Analysis for the Evaluation of Cultivar Differentiation of Freeze-Dried and Lacto-Fermented Beetroot (Beta vulgaris L.). Food Anal. Methods 2022, 15, 1026–1041. [Google Scholar] [CrossRef]
- Wang, K.; Qi, J.; Jin, Y.; Li, F.; Wang, J.; Xu, H. Influence of fruit maturity and lactic fermentation on physicochemical properties, phenolics, volatiles, and sensory of mulberry juice. Food Biosci. 2022, 48, 101782. [Google Scholar] [CrossRef]
- Sajjad, N.; Rasool, A.; Bakr, A.; Fazili, A.B.A.; Bhat, E. Fermentation of fruits and vegetables: A review. Plant Arch. 2020, 20, 1338–1342. [Google Scholar]
- Yuan, X.; Wang, T.; Sun, L.; Qiao, Z.; Pan, H.; Zhong, Y.; Zhuang, Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem. X 2024, 22, 101482. [Google Scholar] [CrossRef]
- Li, Y.; Michelle, M.Z.T.; Ye, H.Z.; Li, D. Lactiplantibacillus plantarum 299v as starter culture suppresses Enterobacteriaceae more efficiently than spontaneous fermentation of carrots. Food Microbiol. 2022, 103, 103952. [Google Scholar] [CrossRef]
Algorithm | Predicted Class (Days of Fermentation) (%) | Actual Class (Days of Fermentation) | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 7 Days | 10 Days | 14 Days | 21 Days | 28 Days | 56 Days | |||
IBk | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 days | 93 |
0 | 96 | 0 | 0 | 0 | 0 | 0 | 4 | 3 days | ||
0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 7 days | ||
0 | 4 | 0 | 72 | 8 | 8 | 4 | 4 | 10 days | ||
0 | 0 | 0 | 4 | 86 | 4 | 0 | 6 | 14 days | ||
0 | 0 | 0 | 3 | 0 | 97 | 0 | 0 | 21 days | ||
0 | 0 | 0 | 4 | 4 | 0 | 89 | 3 | 28 days | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 56 days |
Algorithm | Class (Days of Fermentation) | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|---|
IBk | 0 days | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
3 days | 0.958 | 0.005 | 0.958 | 0.958 | 0.958 | 0.954 | 0.974 | 0.919 | |
7 days | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
10 days | 0.720 | 0.015 | 0.857 | 0.720 | 0.783 | 0.762 | 0.880 | 0.702 | |
14 days | 0.857 | 0.015 | 0.889 | 0.857 | 0.873 | 0.856 | 0.933 | 0.815 | |
21 days | 0.968 | 0.015 | 0.909 | 0.968 | 0.937 | 0.928 | 0.974 | 0.876 | |
28 days | 0.893 | 0.005 | 0.962 | 0.893 | 0.926 | 0.917 | 0.941 | 0.902 | |
56 days | 1.000 | 0.025 | 0.868 | 1.000 | 0.930 | 0.920 | 0.986 | 0.855 |
Algorithm | Predicted Class (Days of Fermentation) (%) | Actual Class (Days of Fermentation) | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 7 Days | 10 Days | 14 Days | 21 Days | 28 Days | 56 Days | |||
WiSARD | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 days | 92 |
0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 3 days | ||
0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 7 days | ||
4 | 4 | 0 | 72 | 8 | 4 | 0 | 8 | 10 days | ||
0 | 0 | 0 | 4 | 82 | 7 | 0 | 7 | 14 days | ||
0 | 0 | 0 | 10 | 0 | 90 | 0 | 0 | 21 days | ||
0 | 0 | 0 | 4 | 0 | 0 | 93 | 3 | 28 days | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 56 days |
Algorithm | Class (Days of Fermentation) | TP Rate | FP Rate | Precision | Recal | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|---|
WiSARD | 0 days | 1.000 | 0.005 | 0.970 | 1.000 | 0.985 | 0.982 | 0.987 | 0.951 |
3 days | 1.000 | 0.005 | 0.960 | 1.000 | 0.980 | 0.977 | 0.912 | 0.825 | |
7 days | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |
10 days | 0.720 | 0.024 | 0.783 | 0.720 | 0.750 | 0.722 | 0.797 | 0.522 | |
14 days | 0.821 | 0.010 | 0.920 | 0.821 | 0.868 | 0.853 | 0.955 | 0.817 | |
21 days | 0.903 | 0.015 | 0.903 | 0.903 | 0.903 | 0.888 | 0.933 | 0.823 | |
28 days | 0.929 | 0.000 | 1.000 | 0.929 | 0.963 | 0.959 | 0.900 | 0.828 | |
56 days | 1.000 | 0.025 | 0.868 | 1.000 | 0.930 | 0.920 | 0.964 | 0.846 |
Algorithm | Predicted Class (Days of Fermentation) (%) | Actual Class (Days of Fermentation) | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 7 Days | 10 Days | 14 Days | 21 Days | 28 Days | 56 Days | |||
Random Committee | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 days | 88 |
4 | 88 | 0 | 0 | 0 | 0 | 0 | 8 | 3 days | ||
0 | 3 | 97 | 0 | 0 | 0 | 0 | 0 | 7 days | ||
4 | 0 | 0 | 72 | 12 | 4 | 4 | 4 | 10 days | ||
0 | 0 | 0 | 11 | 75 | 7 | 0 | 7 | 14 days | ||
0 | 0 | 0 | 0 | 3 | 94 | 3 | 0 | 21 days | ||
0 | 0 | 0 | 0 | 4 | 0 | 96 | 0 | 28 days | ||
0 | 3 | 0 | 3 | 3 | 3 | 0 | 88 | 56 days |
Algorithm | Class (Days of Fermentation) | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|---|
Random Committee | 0 days | 0.969 | 0.010 | 0.939 | 0.969 | 0.954 | 0.946 | 0.997 | 0.978 |
3 days | 0.875 | 0.010 | 0.913 | 0.875 | 0.894 | 0.882 | 0.987 | 0.925 | |
7 days | 0.967 | 0.000 | 1.000 | 0.967 | 0.983 | 0.981 | 1.000 | 0.999 | |
10 days | 0.720 | 0.019 | 0.818 | 0.720 | 0.766 | 0.741 | 0.896 | 0.718 | |
14 days | 0.750 | 0.030 | 0.778 | 0.750 | 0.764 | 0.732 | 0.943 | 0.859 | |
21 days | 0.935 | 0.020 | 0.879 | 0.935 | 0.906 | 0.892 | 0.983 | 0.888 | |
28 days | 0.964 | 0.010 | 0.931 | 0.964 | 0.947 | 0.940 | 0.997 | 0.977 | |
56 days | 0.879 | 0.030 | 0.829 | 0.879 | 0.853 | 0.828 | 0.956 | 0.853 |
Algorithm | Predicted Class (Days of Fermentation) (%) | Actual class (Days of Fermentation) | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 7 Days | 10 Days | 14 Days | 21 Days | 28 Days | 56 Days | |||
LMT | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 days | 90 |
0 | 87 | 0 | 0 | 3 | 3 | 3 | 3 | 3 days | ||
0 | 0 | 96 | 0 | 0 | 0 | 0 | 4 | 7 days | ||
0 | 0 | 0 | 76 | 16 | 5 | 3 | 0 | 10 days | ||
0 | 0 | 0 | 8 | 85 | 0 | 0 | 8 | 14 days | ||
0 | 0 | 0 | 0 | 3 | 90 | 3 | 3 | 21 days | ||
0 | 0 | 0 | 0 | 6 | 0 | 88 | 6 | 28 days | ||
0 | 0 | 0 | 2 | 0 | 0 | 0 | 98 | 56 days |
Algorithm | Class (Days of Fermentation) | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|---|
LMT | 0 days | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
3 days | 0.867 | 0.000 | 1.000 | 0.867 | 0.929 | 0.924 | 0.946 | 0.916 | |
7 days | 0.963 | 0.000 | 1.000 | 0.963 | 0.981 | 0.979 | 0.976 | 0.968 | |
10 days | 0.757 | 0.012 | 0.903 | 0.757 | 0.824 | 0.804 | 0.927 | 0.834 | |
14 days | 0.846 | 0.038 | 0.688 | 0.846 | 0.759 | 0.737 | 0.975 | 0.644 | |
21 days | 0.900 | 0.012 | 0.900 | 0.900 | 0.900 | 0.888 | 0.989 | 0.936 | |
28 days | 0.879 | 0.012 | 0.906 | 0.879 | 0.892 | 0.879 | 0.993 | 0.947 | |
56 days | 0.976 | 0.028 | 0.854 | 0.976 | 0.911 | 0.898 | 0.997 | 0.983 |
Algorithm | Predicted Class (Days of fermentation) (%) | Actual Class (Days of Fermentation) | Average Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Days | 3 Days | 7 Days | 10 Days | 14 Days | 21 Days | 28 Days | 56 Days | |||
IBk | 95 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 days | 89 |
0 | 90 | 0 | 3 | 3 | 0 | 3 | 0 | 3 days | ||
7 | 0 | 89 | 0 | 0 | 4 | 0 | 0 | 7 days | ||
3 | 0 | 0 | 76 | 19 | 3 | 0 | 0 | 10 days | ||
0 | 0 | 0 | 31 | 65 | 0 | 0 | 4 | 14 days | ||
0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 21 days | ||
0 | 3 | 0 | 0 | 0 | 0 | 97 | 0 | 28 days | ||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 56 days |
Algorithm | Class (Days of Fermentation) | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|---|---|
IBk | 0 days | 0.953 | 0.013 | 0.953 | 0.953 | 0.953 | 0.940 | 0.976 | 0.926 |
3 days | 0.900 | 0.004 | 0.964 | 0.900 | 0.931 | 0.924 | 0.934 | 0.853 | |
7 days | 0.889 | 0.000 | 1.000 | 0.889 | 0.941 | 0.937 | 0.956 | 0.902 | |
10 days | 0.757 | 0.036 | 0.757 | 0.757 | 0.757 | 0.721 | 0.888 | 0.662 | |
14 days | 0.654 | 0.030 | 0.680 | 0.654 | 0.667 | 0.635 | 0.875 | 0.551 | |
21 days | 1.000 | 0.012 | 0.909 | 1.000 | 0.952 | 0.948 | 0.995 | 0.918 | |
28 days | 0.970 | 0.004 | 0.970 | 0.970 | 0.970 | 0.966 | 0.968 | 0.947 | |
56 days | 1.000 | 0.012 | 0.933 | 1.000 | 0.966 | 0.960 | 0.992 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Szwejda-Grzybowska, J.; Wrzodak, A.; Mieszczakowska-Frąc, M. Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation. Agriculture 2024, 14, 1855. https://doi.org/10.3390/agriculture14111855
Ropelewska E, Szwejda-Grzybowska J, Wrzodak A, Mieszczakowska-Frąc M. Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation. Agriculture. 2024; 14(11):1855. https://doi.org/10.3390/agriculture14111855
Chicago/Turabian StyleRopelewska, Ewa, Justyna Szwejda-Grzybowska, Anna Wrzodak, and Monika Mieszczakowska-Frąc. 2024. "Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation" Agriculture 14, no. 11: 1855. https://doi.org/10.3390/agriculture14111855
APA StyleRopelewska, E., Szwejda-Grzybowska, J., Wrzodak, A., & Mieszczakowska-Frąc, M. (2024). Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation. Agriculture, 14(11), 1855. https://doi.org/10.3390/agriculture14111855