The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land-Cover Characterization
2.3. Bat Monitoring
2.4. Biodiversity Indices
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wines of Chile Wine Markets. Available online: https://www.winesofchile.org/wine-markets/ (accessed on 26 August 2024).
- Wines of Chile Winegrowing Regions. Available online: https://www.winesofchile.org/winegrowing-regions/ (accessed on 26 August 2024).
- WWF. Living Planet Report 2022—Building a Nature-Positive Society; Almond, R.E.A., Grooten, M., Juffe Bignoli, D., Petersen, T., Eds.; WWF: Gland, Switzerland, 2022. [Google Scholar]
- Viers, J.H.; Williams, J.N.; Nicholas, K.A.; Barbosa, O.; Kotzé, I.; Spence, L.; Webb, L.B.; Merenlender, A.; Reynolds, M. Vinecology: Pairing Wine with Nature. Conserv. Lett. 2013, 6, 287–299. [Google Scholar] [CrossRef]
- Winkler, K.J.; Viers, J.H.; Nicholas, K.A. Assessing Ecosystem Services and Multifunctionality for Vineyard Systems. Front. Environ. Sci. 2017, 5, 15. [Google Scholar] [CrossRef]
- DeClerck, F.A.J.; Jones, S.K.; Attwood, S.; Bossio, D.; Girvetz, E.; Chaplin-Kramer, B.; Enfors, E.; Fremier, A.K.; Gordon, L.J.; Kizito, F.; et al. Agricultural Ecosystems and Their Services: The Vanguard of Sustainability? Curr. Opin. Env. Sustain. 2016, 23, 92–99. [Google Scholar] [CrossRef]
- Dudley, N.; Alexander, S. Agriculture and Biodiversity: A Review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Beilke, E.A.; O’Keefe, J.M. Bats Reduce Insect Density and Defoliation in Temperate Forests: An Exclusion Experiment. Ecology 2023, 104, e3903. [Google Scholar] [CrossRef]
- Charbonnier, Y.; Barbaro, L.; Theillout, A.; Jactel, H. Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations. PLoS ONE 2014, 9, e109488. [Google Scholar] [CrossRef]
- Kunz, T.H.; Braun de Torrez, E.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem Services Provided by Bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef]
- Wanger, T.C.; Darras, K.; Bumrungsri, S.; Tscharntke, T.; Klein, A.-M. Bat Pest Control Contributes to Food Security in Thailand. Biol. Conserv. 2014, 171, 220–223. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Pacheco, J.A.; Beltrán, C.; Allendes, J.L.; Ugarte-Núñez, J.A. Eumops Perotis (Schinz, 1821) (Chiroptera, Molossidae): A New Genus and Species for Chile Revealed by Acoustic Surveys. Mammalia 2023, 87, 283–287. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Allendes, J.L.; Carrasco-Lagos, P.; Moreno, R.A. Murciélagos de La Región Metropolitana de Santiago, Chile; Seremi del Medio Ambiente Región Metropolitana de Santiago, Universidad Santo Tomás y Programa para la Conservación de Murciélagos de Chile (PCMCh): Santiago, Chile, 2014. [Google Scholar]
- Fenton, M.B.; Bell, G.P. Recognition of Species of Insectivorous Bats by Their Echolocation Calls. J. Mammal. 1981, 62, 233–243. [Google Scholar] [CrossRef]
- Jennings, N.V.; Parsons, S.; Barlow, K.E.; Gannon, M.R. Echolocation Calls and Wing Morphology of Bats from the West Indies. Acta Chiropt. 2004, 6, 75–90. [Google Scholar] [CrossRef]
- Jones, G.; Holderied, M.W. Bat Echolocation Calls: Adaptation and Convergent Evolution. Proc. R. Soc. B Biol. Sci. 2007, 274, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Jantzen, M.K.; Fenton, M.B. The Depth of Edge Influence among Insectivorous Bats at Forest–Field Interfaces. Can. J. Zool. 2013, 91, 287–292. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Armesto, J.J.; Arroyo, M.T.K.; Hinojosa Opazo, L. The Mediterranean Environment of Chile. In The Physical Geography of South America; Oxford University Press: Oxford, UK, 2007; pp. 184–199. [Google Scholar]
- Arancibia Fortes, J.; Araya Silva, J.L.; Zunino Mardones, D. Análisis Vegetacional Del Bosque Nativo En La Región Mediterránea de La Zona Central de Chile: Zona de Estudio Valle de Colliguay. Investig. Geográficas 2020, 59, 105–119. [Google Scholar] [CrossRef]
- Echeverria, C.; Coomes, D.; Salas, J.; Rey-Benayas, J.M.; Lara, A.; Newton, A. Rapid Deforestation and Fragmentation of Chilean Temperate Forests. Biol. Conserv. 2006, 130, 481–494. [Google Scholar] [CrossRef]
- Garfias, R.S.; Castillo, M.S.; Ruiz, F.G.; Vita, A.A.; Bown, H.I.; Navarro, R.C. Remanentes de Bosque Esclerófilo En La Zona Mediterránea de Chile Central: Caracterización y Distribución de Fragmentos. Interciencia 2018, 43, 655–663. [Google Scholar]
- Matlack, G.R. Microenvironment Variation within and among Forest Edge Sites in the Eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Aragón, G.; Abuja, L.; Belinchón, R.; Martínez, I. Edge Type Determines the Intensity of Forest Edge Effect on Epiphytic Communities. Eur. J. Res. 2015, 134, 443–451. [Google Scholar] [CrossRef]
- Navarro, M.D.C.R.; González, L.F.G.; Flores, R.V.; Amparán, R.T.S. Fragmentación y Sus Implicaciones; Análisis y Reflexión Documental; Universidad de Guadalajara: Guadalajara, Mexico, 2015. [Google Scholar]
- da Rosa, C.A.; Secco, H.; Carvalho, N.; Maia, A.C.; Bager, A. Edge Effects on Small Mammals: Differences between Arboreal and Ground-dwelling Species Living near Roads in Brazilian Fragmented Landscapes. Austral. Ecol. 2018, 43, 117–126. [Google Scholar] [CrossRef]
- Tõnisalu, G.; Väli, Ü. Edge Effect in Rodent Populations at the Border between Agricultural Landscapes and Forests. Eur. J. Wildl. Res. 2022, 68, 34. [Google Scholar] [CrossRef]
- Kelly, R.M.; Kitzes, J.; Wilson, H.; Merenlender, A. Habitat Diversity Promotes Bat Activity in a Vineyard Landscape. Agric. Ecosyst. Environ. 2016, 223, 175–181. [Google Scholar] [CrossRef]
- Avila, F. Efecto Del Tipo de Vegetación Adyacente En La Actividad y Riqueza de Especies de Murciélagos Insectívoros En Viñedos de Chile Central; Seminario de Título Para Optar al Título de Biólogo, Mención Medio Ambiente; Universidad de Chile: Santiago, Chile, 2019. [Google Scholar]
- Rodríguez-San Pedro, A.; Chaperon, P.N.; Beltrán, C.A.; Allendes, J.L.; Ávila, F.I.; Grez, A.A. Influence of Agricultural Management on Bat Activity and Species Richness in Vineyards of Central Chile. J. Mammal. 2018, 99, 1495–1502. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Rodríguez-Herbach, C.; Allendes, J.L.; Chaperon, P.N.; Beltrán, C.A.; Grez, A.A. Responses of Aerial Insectivorous Bats to Landscape Composition and Heterogeneity in Organic Vineyards. Agric. Ecosyst. Environ. 2019, 277, 74–82. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Ávila, F.; Chaperon, P.N.; Beltrán, C.A.; Allendes, J.L.; Grez, A.A. The Role of the Adjacent Habitat on Promoting Bat Activity in Vineyards: A Case Study from Central Chile. Acta Chiropt. 2021, 23, 177–187. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Rojas, C.; Saldaña-Vázquez, R.A.; Stoner, K.E. Landscape Composition Is More Important than Landscape Configuration for Phyllostomid Bat Assemblages in a Fragmented Biodiversity Hotspot. Biol. Conserv. 2016, 198, 84–92. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Simonetti, J.A. The Relative Influence of Forest Loss and Fragmentation on Insectivorous Bats: Does the Type of Matrix Matter? Landsc. Ecol. 2015, 30, 1561–1572. [Google Scholar] [CrossRef]
- Laforge, A.; Barbaro, L.; Bas, Y.; Calatayud, F.; Ladet, S.; Sirami, C.; Archaux, F. Road Density and Forest Fragmentation Shape Bat Communities in Temperate Mosaic Landscapes. Landsc. Urban. Plan. 2022, 221, 104353. [Google Scholar] [CrossRef]
- Cruz, C.S.; Calderón, J.S. Guía Climática Práctica; Direcció General de Aeronáutica Civil: Santiago, Chile, 2008.
- Gajardo, R. La Vegetación Natural de Chile. Clasificación y Distribución Geográfica; Editorial Universitaria: Santiago, Chile, 1994. [Google Scholar]
- Hernández, J.L.; Espinosa Castro, J.F.; Peñaloza Tarazona, M.E.; Fernández González, J.E.; Chacón Rangel, J.G.; Toloza Sierra, C.A.; Arenas Torrado, M.K.; Carrillo Sierra, S.M.; Bermúdez Pirela, V.J. Sobre El Uso Adecuado Del Coeficiente de Correlación de Pearson: Definición, Propiedades y Suposiciones. Arch. Venez. Farmacol. Ter. Éutica 2018, 37, 587–595. [Google Scholar]
- Mosquera, D.; Fessl, B.; Anchundia, D.; Heyer, E.; Leuba, C.; Nemeth, E.; Rojas, M.L.; Sevilla, C.; Tebbich, S. The Invasive Parasitic Fly Philornis Downsi Is Threatening Little Vermilion Flycatchers on the Galápagos Islands. Avian Conserv. Ecol. 2022, 17, art6. [Google Scholar] [CrossRef]
- Mann, G.F. Los Pequeños Mamíferos de Chile (Marsupiales, Quirópteros, Edentados y Roedores); Gayana: Santiago, Chile, 1978. [Google Scholar]
- Erickson, J.L.; West, S.D. The Influence of Regional Climate and Nightly Weather Conditions on Activity Patterns of Insectivorous Bats. Acta Chiropt. 2002, 4, 17–24. [Google Scholar] [CrossRef]
- Meynard, C.N.; Soto-Gamboa, M.; Heady, P.A.; Frick, W.F. Bats of the Chilean Temperate Rainforest: Patterns of Landscape Use in a Mosaic of Native Forests, Eucalyptus Plantations and Grasslands within a South American Biodiversity Hotspot. Biodivers. Conserv. 2014, 23, 1949–1963. [Google Scholar] [CrossRef]
- Froidevaux, J.S.P.; Zellweger, F.; Bollmann, K.; Obrist, M.K. Optimizing Passive Acoustic Sampling of Bats in Forests. Ecol. Evol. 2014, 4, 4690–4700. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-San Pedro, A.; Simonetti, J.A. Acoustic Identification of Four Species of Bats (Order Chiroptera) in Central Chile. Bioacoustics 2013, 22, 165–172. [Google Scholar] [CrossRef]
- Rodríguez-San Pedro, A.; Simonetti, J.A. Variation in Search-Phase Calls of Lasiurus Varius (Chiroptera: Vespertilionidae) in Response to Different Foraging Habitats. J. Mammal. 2014, 95, 1004–1010. [Google Scholar] [CrossRef]
- Ossa, G.; Bonacic, C.; Barquez, R.M. First Record of Histiotus Laephotis (Thomas, 1916) from Chile and New Distributional Information for Histiotus Montanus (Phillipi and Landbeck, 1861) (Chiroptera, Vespertilionidae). Mammalia 2015, 79, 1–5. [Google Scholar] [CrossRef]
- Ossa, G.; Ibarra, J.T.; Barboza, K.; Hernández, F.; Gálvez, N.; Laker, J.; Bonacic, C. Analysis of the Echolocation Calis and Morphometry of a Population of Myotis Chiloensis (Waterhouse, 1838) from the Southern Chilean Temperate Forest. Cienc Investig Agrar 2010, 37, 131–139. [Google Scholar] [CrossRef]
- Moreno, C.E. Métodos Para Medir La Biodiversidad; M & T–Manual: Zaragoza, Spain, 2001. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Durán, A.A.; Pérez, C.S. Ensamblaje de Murciélagos (Mammalia: Chiroptera) En Dos Zonas Del Departamento de Sucre, Colombia. Bat Assemblages (Mammalia: Chiroptera). Acta Zoológica Mex. 2015, 31, 358–366. [Google Scholar] [CrossRef]
- Smirnov, D.G.; Vekhnik, V.P. Abundance and Community Structure of Bats (Chiroptera: Vespertilionidae) Hibernating in Artificial Caves of Samarskaya Luka. Russ. J. Ecol. 2011, 42, 71–79. [Google Scholar] [CrossRef]
- Boero, L.; Poffo, D.; Damino, V.; Villalba, S.; Barquez, R.M.; Rodríguez, A.; Suárez, M.; Beccacece, H.M. Monitoring and Characterizing Temporal Patterns of a Large Colony of Tadarida Brasiliensis (Chiroptera: Molossidae) in Argentina Using Field Observations and the Weather Radar RMA1. Remote Sens. 2020, 12, 210. [Google Scholar] [CrossRef]
- R: Core Team. A Language and Environment for Statistical Computing; R: Core Team: Vienna, Austria, 2024. [Google Scholar]
- Chaperon, P.N.; Rodríguez-San Pedro, A.; Beltrán, C.A.; Allendes, J.L.; Barahona-Segovia, R.M.; Urra, F.; Grez, A.A. Effects of Adjacent Habitat on Nocturnal Flying Insects in Vineyards and Implications for Bat Foraging. Agric. Ecosyst. Environ. 2022, 326, 107780. [Google Scholar] [CrossRef]
- Canals, M.; Cattan, P.E. Radiografía a Los Murciélagos de Chile; Editorial Universitaria de Chile: Santiago, Chile, 2008. [Google Scholar]
- MMA—ONU Medio Ambiente. Estudio de Caso: Determinación Del Servicio Ecosistémico de Control Biológico de Plagas Que Prestan Los Murciélagos Nativos, En Tres Comunas Dentro Del Área Del Proyecto GEF Montaña; MMA—ONU Medio Ambiente: Santiago, Chile, 2018. [Google Scholar]
- Canals, M.; Iriarte-Díaz, J.; Olivares, R.; Novoa, F.F. Comparación de La Morfología Alar de Tadarida Brasiliensis (Chiroptera: Molossidae) y Myotis Chiloensis (Chiroptera: Vespertilionidae), Representantes de Dos Diferentes Patrones de Vuelo. Rev. Chil. Hist. Nat. 2001, 74, 699–704. [Google Scholar] [CrossRef]
- Iriarte, A.W. Mamíferos de Chile; Iriarte, A.W., Ed.; Lynx: Barcelona, Spain, 2008. [Google Scholar]
- Hunninck, L.; Coleman, K.; Boman, M.; O’Keefe, J. Far from Home: Bat Activity and Diversity in Row Crop Agriculture Decreases with Distance to Potential Roost Habitat. Glob. Ecol. Conserv. 2022, 39, e02297. [Google Scholar] [CrossRef]
- Lentini, P.E.; Gibbons, P.; Fischer, J.; Law, B.; Hanspach, J.; Martin, T.G. Bats in a Farming Landscape Benefit from Linear Remnants and Unimproved Pastures. PLoS ONE 2012, 7, e48201. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalitites, and Trade-Offs. Ecol. Soc. 2012, 17, 1–23. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes That Work for Biodiversity and People. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef]
- Limpens, H.; Bats, K.K. Their Behaviour and Linear Landscape Elements. Myotis 1991, 29, 39–48. [Google Scholar]
- Verboom, B.; Spoelstra, K. Effects of Food Abundance and Wind on the Use of Tree Lines by an Insectivorous Bat, Pipistrellus Pipistrellus. Can. J. Zool. 1999, 77, 1393–1401. [Google Scholar] [CrossRef]
- Jensen, M.E.; Moss, C.F.; Surlykke, A. Echolocating Bats Can Use Acoustic Landmarks for Spatial Orientation. J. Exp. Biol. 2005, 208, 4399–4410. [Google Scholar] [CrossRef]
- Frey-Ehrenbold, A.; Bontadina, F.; Arlettaz, R.; Obrist, M.K. Landscape Connectivity, Habitat Structure and Activity of Bat Guilds in Farmland-dominated Matrices. J. Appl. Ecol. 2013, 50, 252–261. [Google Scholar] [CrossRef]
- Galaz, J.L.L.; Yáñez, J.V.; Gantz, A.P.; Martínez, D.R. Orden Chiroptera. In Mamíferos de Chile; Pedrero, A.M., Yáñez, J.V., Eds.; CEA Eds: Valdivia, Chile, 2009; pp. 67–83. [Google Scholar]
- Olimpi, E.M.; Philpott, S.M. Agroecological Farming Practices Promote Bats. Agric. Ecosyst. Environ. 2018, 265, 282–291. [Google Scholar] [CrossRef]
Land Cover | Description |
---|---|
Tree_hedgerows_100 m | Linear trees that are used to separate properties, for shade, and as a wind breaker. Includes exotic and native trees. |
Annual_crop_100 m | Vegetables (lettuce, tomatoes, peppers) and cereal crops (wheat, corn), including naturally and naturalized grasslands (annual and perennial), mainly from the Poaceae family. Species include Holcus lanatus, Dactylis glomerata, Festuca sp. |
Rural_100 m | Areas in the countryside that include farm buildings, greenhouses, and asphalted roads, within 100 m radii. This category includes some green areas, such as gardens, squares, and recreational areas. |
Water_1 km | Watercourses, including irrigation channels, ponds, and the Maipo River. |
Forest_1 km | Native sclerophyllous forest trees over 2 m high. These hard-leaved species have thick, leathery leaves, designed to reduce water loss during long dry seasons. Species include Peumus boldus, Quillaja saponaria, Lithraea caustica, Cryptocarya alba, Crinodendron patagua, and Prosopis chilensis, among others, as coexisting species. |
Shrubland_1 km | Native shrubs less than 2 m high. This shrubland community features a mix of drought-deciduous and evergreen shrubs and small trees, as well as cacti and bromeliads, including species such as Vachellia caven, Colliguaja odorifera, and Trevoa trinervis, among others, and succulents (Puya sp., Echinopsis chiloensis), as coexisting species. |
Herbs_10 m | Spontaneous vegetation at 10 m radii, including grasses, weeds, and native herbaceous plants. |
Habitat 1 | Number of Ultrasonic Recorders (AudioMoths) | Nights | Recordings (%) | Foraging Activity (%) | Feeding (%) |
---|---|---|---|---|---|
V | 38 | 961 | 159,987 (35.36) | 8376 (36.77) | 888 (33.25) |
E | 38 | 965 | 147,260 (32.55) | 9857 (43.27) | 1444 (54.06) |
N | 28 | 675 | 104,813 (23.17) | 4548 (19.96) | 339 (12.69) |
Total | 104 | 2601 | 452,459 | 22,781 | 2671 |
Habitat 1 | Tadarida brasiliensis | Myotis chiloensis | Lasiurus varius | Lasiurus villosissimus | Hystiotus macrotus | Hystiotus montanus |
---|---|---|---|---|---|---|
V | 81.64 | 15.65 | 1.44 | 0.76 | 0.30 | 0.20 |
E | 58.32 | 36.44 | 4.57 | 0.26 | 0.02 | 0.39 |
N | 61.14 | 30.64 | 4.77 | 0.92 | 0.33 | 2.18 |
Total | 67.34 | 27.73 | 3.48 | 0.58 | 0.19 | 0.69 |
Survey Site | Shannon | Simpson (1-D) |
---|---|---|
V | 0.58 | 0.31 |
E | 0.86 | 0.52 |
N | 0.82 | 0.47 |
Guild | Environmental Variables | Estimate (±SE) | p Value | R2 Adjusted (%) |
---|---|---|---|---|
Richness (N = 4213; 6 species) | Season_spring | −0.032 ± 0.034 | 0.353 | |
Longitude | 0.003 ± 0.034 | 0.929 | ||
Tree_hedgerows_100 m | 0.024748 ± 0.018 | 0.180 | 7.70 | |
Annual_crop_100 m | −0.037 ± 0.029 | 0.204 | ||
Rural_100 m | 0.02 ± 0.032 | 0.522 | ||
Water_1 km | −0.019 ± 0.031 | 0.539 | ||
Forest_1 km | −0.011 ± 0.031 | 0.732 | ||
Shrubland_1 km | 0.076 ± 0.036 | 0.033 * | ||
Herbs_10 m | −0.034 ± 0.029 | 0.241 | ||
General activity (N = 22,781) | Water_1 km | 0.095 ± 0.033 | 0.004 ** | |
Tree_hedgerows_100 m | 0.084 ± 0.042 | 0.048 * | ||
Forest_1 km | 0.173 ± 0.048 | <0.0001 *** | ||
Annual_crop_100 m | −0.629 ± 0.09 | <0.0001 *** | 96.86 | |
Herbs_10 m | 0.096 ± 0.017 | <0.0001 *** | ||
Rural_100 m | 0.026 ± 0.016 | 0.11 | ||
Season_spring | −0.357 ± 0.069 | <0.0001 *** | ||
Shrubland_1 km | 0.061 ± 0.11 | 0.581 | ||
Longitude | −0.057 ± 0.105 | 0.586 | ||
General activity without T. brasiliensis (N = 9100) | Season_spring | 0.188 ± 0.073 | 0.01 ** | |
Longitude | 0.064 ± 0.164 | 0.696 | ||
Tree_hedgerows_100 m | 0.212 ± 0.071 | 0.003 ** | ||
Annual_crop_100 m | −0.13 ± 0.116 | 0.261 | ||
Rural_100 m | 0.143 ± 0.045 | 0.001 ** | 40.90 | |
Water_1 km | 0.079 ± 0.086 | 0.357 | ||
Forest_1 km | 0.168 ± 0.11 | 0.129 | ||
Shrubland_1 km | 0.402 ± 0.169 | 0.018 * | ||
Herbs_10 m | 0.114 ± 0.054 | 0.033 * | ||
Feeding activity (N = 2671) | Season_spring | 0 ± 0.098 | 0.997 | |
Longitude | 0.1 ± 0.118 | 0.396 | ||
Tree_hedgerows_100 m | 0.218 ± 0.063 | 0.001 *** | ||
Annual_crop_100 m | −0.128 ± 0.103 | 0.215 | ||
Rural_100 m | 0.21 ± 0.058 | <0.0001 *** | 29.00 | |
Water_1 km | 0.06 ± 0.089 | 0.496 | ||
Forest_1 km | −0.144 ± 0.104 | 0.166 | ||
Shrubland_1 km | 0.086 ± 0.125 | 0.49 | ||
Herbs_10 m | 0.041 ± 0.071 | 0.566 | ||
T. brasiliensis (N = 13,645) | Annual_crop_100 m | −0.515 ± 0.1 | <0.0001 *** | |
Herbs_10 m | 0.037 ± 0.02 | 0.064 . | ||
Rural_100 m | −0.128 ± 0.026 | <0.0001 *** | ||
Season_spring | −0.689 ± 0.093 | <0.0001 *** | ||
Forest_1 km | 0.048 ± 0.045 | 0.278 | 95.36 | |
Tree_hedgerows_100 m | −0.083 ± 0.081 | 0.306 | ||
Water_1 km | −0.018 ± 0.038 | 0.632 | ||
Longitude | 0.033 ± 0.14 | 0.817 | ||
Shrubland_1 km | −0.02 ± 0.129 | 0.88 | ||
M. chiloensis (N = 5619) | Season_spring | 0.27 ± 0.087 | 0.002 ** | |
Longitude | −0.041 ± 0.181 | 0.822 | ||
Tree_hedgerows_100 m | 0.133 ± 0.089 | 0.132 | ||
Annual_crop_100 m | −0.152 ± 0.151 | 0.312 | 41.90 | |
Rural_100 m | 0.252 ± 0.053 | <0.0001 *** | ||
Water_1 km | −0.274 ± 0.13 | 0.036 * | ||
Forest_1 km | 0.342 ± 0.148 | 0.021 * | ||
Shrubland_1 km | 0.224 ± 0.188 | 0.234 | ||
Herbs_10 m | −0.174 ± 0.071 | 0.015 * | ||
L. varius (N = 705) | Season_spring | 0.808 ± 0.136 | <0.0001 *** | |
Longitude | 0.072 ± 0.249 | 0.773 | ||
Tree_hedgerows_100 m | 0.147 ± 0.085 | 0.0818 . | ||
Annual_crop_100 m | −0.005 ± 0.131 | 0.971 | 29.88 | |
Rural_100 m | 0.176 ± 0.142 | 0.215 | ||
Water_1 km | 0.147 ± 0.146 | 0.315 | ||
Forest_1 km | 0.012 ± 0.162 | 0.938 | ||
Shrubland_1 km | 0.604 ± 0.263 | 0.0218 * | ||
Herbs_10 m | −0.102 ± 0.13 | 0.433 | ||
L. villosissimus (N = 117) | Water_1 km | −27.13 ± 5802 | 0.062 . | |
Forest_1 km | −0.577 ± 0.3088 | 0.127 | ||
Herbs_10 m | −0.333 ± 0.218 | 0.042 * | ||
Longitude | 0.414 ± 0.2032 | 0.011 * | 13.58 | |
Shrubland_1 km | 0.592 ± 0.2313 | <0.0001 *** | ||
Rural_100 m | 0.939 ± 0.2369 | 0.996 | ||
Season_spring | −327.7 ± 68370 | 0.993 | ||
Tree_hedgerows_100 m | −36.38 ± 4041 | 0.662 | ||
Annual_crop_100 m | −0.0546 ± 0.1246 | 0.841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puelles-Escobar, B.; Muñoz-Sáez, A. The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices. Agriculture 2024, 14, 1896. https://doi.org/10.3390/agriculture14111896
Puelles-Escobar B, Muñoz-Sáez A. The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices. Agriculture. 2024; 14(11):1896. https://doi.org/10.3390/agriculture14111896
Chicago/Turabian StylePuelles-Escobar, Benjamín, and Andrés Muñoz-Sáez. 2024. "The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices" Agriculture 14, no. 11: 1896. https://doi.org/10.3390/agriculture14111896
APA StylePuelles-Escobar, B., & Muñoz-Sáez, A. (2024). The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices. Agriculture, 14(11), 1896. https://doi.org/10.3390/agriculture14111896