Leguminous Green Manure Intercropping Promotes Soil Health in a Citrus (Citrus reticulata) Orchard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Sampling
2.2. Soil Samples
2.3. Characterization of the Properties of Chemicals in the Soil
2.4. Enzyme Activity Assays
2.5. Microbial DNA Extraction, PCR Amplification, and Illumina NovaSeq Sequencing
2.6. Statistical Analysis
3. Results
3.1. Soil Nutrients and Properties
3.2. Activities of Soil Enzymes
3.3. Soil Microbial Diversity and Communities Under Long-Term Intercropping of Different Green Manures
3.4. Soil Microbial Community Composition Under the Long-Term Intercropping of Different Types of Green Manures
3.5. Comprehensive Analysis of the Soil Properties and Microbial Diversity
3.6. Difference Analysis of the Soil Microbial Communities Under the Different Treatments
3.7. RDA of the Beneficial Microbial and the Spearman’s Correlation Analysis
4. Discussion
4.1. Responses of the Soil Nutrients, Properties and Enzyme Activities to Green Manure Intercropping
4.2. Responses of the Microbial Community Diversity to Green Manure Intercropping
4.3. Responses of the Soil Fungal Community Composition to Green Manure Intercropping
4.4. Responses of the Soil Bacterial Community Composition to Green Manure Intercropping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, J.C.; Wang, S.; Wang, Y.D.; Luo, W. Determining the planting year of navel orange trees in mountainous and hilly areas of southern China: A remote sensing based method. J. Mt. Sci. 2024, 21, 1–13. [Google Scholar] [CrossRef]
- Guan, G.; Zhang, S.; He, T.Y.; Guo, F.P.; Zhu, J. Sod culture treatments positively affect soil fungal diversity, soil enzyme activities, and nutrient uptake in navel orange orchards. Soil Sci. Plant Nutr. 2024, 24, 5130–5143. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Kanissery, R.; Strauss, S.L. Cover crops in citrus orchards impact soil nutrient cycling and the soil microbiome after three years but effects are site-specific. Biol. Fert. Soils 2023, 59, 659–678. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, C.; Su, Y.W.; Peng, W.C.; Lu, R.; Liu, Y.X.; Huang, H.C.; He, X.H.; Yang, M.; Zhu, S.S. Soil acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.C.; Riaz, M.; Yang, L.; Chen, Y.F.; Fan, X.P.; Xia, X.E. 14 years applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef]
- An, S.H.; Wei, Y.L.; Li, H.M.; Zhao, Z.J.; Hu, J.D.; Philp, J.; Ryder, M.; Toh, R.; Li, J.S.; Zhou, Y.; et al. Long-term monocultures of american ginseng change the rhizosphere microbiome by reducing phenolic acids in soil. Agriculture 2022, 12, 640. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Yue, L.; Tian, Y.; Zhou, Q.; Wang, Y.; Liu, S.F.; Guo, Z.H.; Zhang, Y.B.; Wang, R.Y. Continuous monoculture alters the fungal community and accumulates potential pathogenic strains in the rhizosphere of Codonopsis pilosula. Phytobiomes J. 2024, 8, 340–349. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zheng, X.Q.; Wei, X.C.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Wei, L.; Lv, W.G.; Zhang, H.Q.; Zhang, Y.; Zhang, H.Y.; Zhang, H.L.; Zhu, Z.K.; Ge, T.D.; Zhang, W.J. Long-term bioorganic and organic fertilization improved soil quality and multifunctionality under continuous cropping in watermelon. Agric. Ecosyst. Environ. 2024, 359, 108721. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Guan, K.Y.; Villamil, M.B. Do cover crops benefit soil microbiome? a meta-analysis of current research. Soil Biol. Biochem. 2020, 142, 107701. [Google Scholar] [CrossRef]
- Wang, T.; Duan, Y.; Liu, G.D.; Shang, X.W.; Liu, L.F.; Zhang, K.X.; Li, J.Q.; Zou, Z.W.; Zhu, X.J.; Fang, W.P. Tea plantation intercropping green manure enhances soil functional microbial abundance and multifunctionality resistance to drying-rewetting cycles. Sci. Total Environ. 2022, 810, 151282. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.G.; Hu, G.L.; Zhang, Y.Q.; Qi, J.X.; Chen, Y.H.; Hao, Y.B. Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard. Sci. Rep. 2021, 11, 16882. [Google Scholar] [CrossRef] [PubMed]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of cover crops on the soil microbiome of tree crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Rao, G.D.; Sui, J.K.; Zhang, J.G. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 2016, 5, 829–836. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Wang, C.K.; Luo, Y.Q. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Lopes, M.J.D.; Dias, M.B.; Gurgel, E.S.C. Successful plant growth-promoting microbes: Inoculation methods and abiotic factors. Front. Sustain. Food Syst. 2021, 5, 606454. [Google Scholar] [CrossRef]
- Khan, M.F.; Chowdhary, S.; Koksch, B.; Murphy, C.D. Biodegradation of amphipathic fluorinated peptides reveals a new bacterial defluorinating activity and a new source of natural organofluorine compounds. Environ. Sci. Technol. 2023, 57, 9762–9772. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2022, 21, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bonkowski, M.; Shen, Y.; Griffiths, B.S.; Jiang, Y.J..; Wang, X.Y.; Sun, B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Tilman, D. Benefits of intensive agricultural intercropping. Nat. Plants 2020, 6, 604–605. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Chen, H.R.; Fan, J.H.; Wang, Y.Y.; Li, Y.; Chen, J.B.; Fan, J.X.; Yang, S.S.; Hu, L.P.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef]
- Wang, C.X.; Liang, Q.; Liu, J.N.; Zhou, R.; Lang, X.Y.; Xu, S.Y.; Li, X.C.; Gong, A.D.; Mu, Y.T.; Fang, H.C.; et al. Impact of intercropping grass on the soil rhizosphere microbial community and soil ecosystem function in a walnut orchard. Front. Microbiol. 2023, 14, 1137590. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Liang, L.N.; Xu, R.N.; Xu, H.Y.; Sun, L.L.; Liao, H. Intercropping tea plantations with soybean and rapeseed enhances nitrogen fixation through shifts in soil microbial communities. Front. Agric. Sci. Eng. 2022, 9, 344–355. [Google Scholar] [CrossRef]
- Huo, Y.; Kang, J.P.; Park, J.K.; Li, J.; Chen, L.; Yang, D.C. Rhodanobacter ginsengiterrae sp. nov., an antagonistic bacterium against root rot fungal pathogen Fusarium solani, isolated from ginseng rhizospheric soil. Arch. Microbiol. 2018, 200, 1457–1463. [Google Scholar] [CrossRef]
- Jalloh, A.A.; Mutyambai, D.M.; Yusuf, A.A.; Subramanian, S.; Khamis, F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci. Rep. 2024, 14, 14355. [Google Scholar] [CrossRef]
- Bargaz, A.; Isaac, M.E.; Jensen, E.S.; Carlsson, G. Nodulation and root growth increase in lower soil layers of water-limited faba bean intercropped with wheat. J. Plant Nutr. Soil Sci. 2016, 179, 537–546. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Safir, G.R.; Nair, M.G. Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol. 1991, 118, 87–93. [Google Scholar] [CrossRef]
- Alam, M.Z.; Lynch, D.H.; Sharifi, M.; Burton, D.L.; Hammermeister, A.M. The effect of green manure and organic amendments on potato yield, nitrogen uptake and soil mineral nitrogen. Biol. Agric. Hortic. 2016, 32, 221–236. [Google Scholar] [CrossRef]
- Murugan, R.; Kumar, S. Influence of long-term fertilization and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biol. Fertil. Soils 2013, 49, 847–856. [Google Scholar] [CrossRef]
- Ding, T.T.; Yan, Z.C.; Zhang, W.Z.; Duan, T.Y. Green manure crops affected soil chemical properties and fungal diversity and community of apple orchard in the loess plateau of China. J. Soil Sci. Plant Nutr. 2021, 21, 1089–1102. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Zhai, Y.J.; Jia, J.; Zhao, Q.Q.; Wang, W.; Hu, X.Y. Microbial diversity and functions in saline soils: A review from a biogeochemical perspective. J. Adv. Res. 2024, 59, 129–140. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Maltais-Landry, G.; Martens-Habbena, W.; Strauss, S.L. Depth-dependent effects of cover crops in citrus orchards on soil carbon and nitrogen cycling, greenhouse gas emissions, and soil microbial communities. Appl. Soil Ecol. 2023, 192, 105071. [Google Scholar] [CrossRef]
- Bazany, K.E.; Delgado-Baquerizo, M.; Thompson, A.; Wang, J.T.; Otto, K.; Adair, R.C.J.; Borch, T.; Leach, J.E.; Trivedi, P. Management-induced shifts in rhizosphere bacterial communities contribute to the control of pathogen causing citrus greening disease. J. Sustain. Agric. Environ. 2022, 1, 275–286. [Google Scholar] [CrossRef]
- Gao, Z.C.; Xu, Q.X.; Si, Q.; Zhang, S.P.; Fu, Z.Y.; Chen, H.S. Effects of different straw mulch rates on the runoff and sediment yield of young citrus orchards with lime soil and red soil under simulated rainfall conditions in southwest China. Water 2022, 14, 1119. [Google Scholar] [CrossRef]
- Wang, Y.H.; Long, Q.; Li, Y.Y.; Kang, F.R.; Fan, Z.H.; Xiong, H.Y.; Zhao, H.Y.; Luo, Y.Y.; Guo, R.; He, X.H.; et al. Mitigating magnesium deficiency for sustainable citrus production: A case study in southwest China. Sci. Hortic. 2022, 295, 110832. [Google Scholar] [CrossRef]
- Lu, R.K. Assay on Agro-Chemical Properties of Soil, 3rd ed.; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 146–170. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 1981; pp. 103–106. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 961–1010. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Hoffmann, G.; Teicher, K. Ein kolorimetrisches verfahren zur bestimmung der ureaseaktivität in böden. J. Plant Nutr. 1961, 95, 55–63. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Wang, Q.L.; Wang, L.; Liu, W.X.; Liu, X.Y.; Huang, Y.J.; Christie, P. Response of soil enzymes and microbial communities to root extracts of the alien Alternanthera Philoxeroides. Arch. Agron. Soil Sci. 2018, 64, 708–717. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Vandermeer, J.; van Noordwijk, M.; Anderson, J.; Ong, C.; Perfecto, I. Global change and multi-species agroecosystems: Concepts and issues. Agric. Ecosyst. Environ. 1998, 67, 1–22. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Jayaraman, S.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Chaudhary, R.S.; Shukla, A.K.; Shirale, A.O.; Neenu, S.; Naorem, A.K.; Rashmi, I.; et al. Conservation tillage, residue management, and crop rotation effects on soil major and micro-nutrients in semi-arid vertisols of India. J. Soil Sci. Plant Nutr. 2021, 21, 523–535. [Google Scholar] [CrossRef]
- Vance, C.P.; Graham, P.H.; Allan, D.L. Biological Nitrogen Fixation: Phosphorus—A Critical Future Need? In Current Plant Science and Biotechnology in Agriculture; Pedrosa, F.O., Hungria, M., Yates, G., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2000; pp. 509–514. [Google Scholar] [CrossRef]
- Hinsinger, P.; Betencourt, E.; Bernard, L.; Brauman, A.; Plassard, C.; Shen, J.B.; Tang, X.Y.; Zhang, F.S. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 2011, 156, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.F.; McNickle, G.G.; Haag, J.J.; Lamb, E.G.; Nyanumba, S.M.; Clair, C.C.S. Plants integrate information about nutrients and neighbors. Science 2010, 328, 1657. [Google Scholar] [CrossRef]
- Bargaz, A.; Noyce, G.L.; Fulthorpe, R.; Carlsson, G.; Furze, J.R.; Jensen, E.S.; Dhiba, D.; Isaac, M.E. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Appl. Soil Ecol. 2017, 120, 179–188. [Google Scholar] [CrossRef]
- Sun, Y.B.; Bi, H.X.; Xu, H.S.; Duan, H.Q.; Peng, R.D.; Wang, J.J. Variation of Fine Roots Distribution in Apple (Malus pumila M.)-Crop Intercropping Systems on the Loess Plateau of China. Agronomy 2018, 8, 280. [Google Scholar] [CrossRef]
- Gong, X.W.; Liu, C.J.; Li, J.; Luo, Y.; Yang, Q.H.; Zhang, W.L.; Yang, P.; Feng, B.L. Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil Tillage Res. 2019, 195, 104355. [Google Scholar] [CrossRef]
- Peng, X.H.; Zhu, Q.H.; Zhang, Z.B.; Hallett, P.D. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biol. Biochem. 2017, 109, 81–94. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.J.; Wang, L.X.; Jacinthe, P.A.; Zhao, W.W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Venter, Z.S.; Jacobs, K.; Hawkins, H.J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016, 59, 215–223. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yin, S.W.; Shao, Y.; Zhang, K.R. Soil bacteria are more sensitive than fungi in response to nitrogen and phosphorus enrichment. Front. Microbiol. 2022, 13, 999385. [Google Scholar] [CrossRef]
- Chamkhi, I.; Cheto, S.; Geistlinger, J.; Zeroual, Y.; Kouisni, L.; Bargaz, A.; Ghoulam, C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind. Crops Prod. 2022, 183, 114958. [Google Scholar] [CrossRef]
- Cao, T.T.; Luo, Y.C.; Shi, M.; Tian, X.J.; Kuzyakov, Y. Microbial interactions for nutrient acquisition in soil: Miners, scavengers, and carriers. Soil Biol. Biochem. 2024, 188, 109215. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Janssens, I.A.; Deng, Y.; He, X.J.; Liu, L.L.; Yi, Y.; Xiao, N.W.; Wang, X.D.; Li, C.; et al. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Glob. Chang. Biol. 2024, 30, e17111. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pan, F.J.; Han, X.Z.; Song, F.B.; Zhang, Z.M.; Yan, J.; Xu, Y.L. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops. J. Integr. Agric. 2020, 19, 866–880. [Google Scholar] [CrossRef]
- Abdellah, Y.A.Y.; Li, T.Z.; Chen, X.; Cheng, Y.; Sun, S.S.; Wang, Y.; Jiang, C.; Zang, H.L.; Li, C.Y. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions. Bioresour. Technol. 2021, 320, 124402. [Google Scholar] [CrossRef]
- Wang, G.W.; Jin, Z.X.; George, T.S.; Feng, G.; Zhang, L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. 2023, 238, 2578–2593. [Google Scholar] [CrossRef]
- Zhang, F.; Zou, Y.N.; Wu, Q.S.; Kuca, K. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 2020, 171, 103962. [Google Scholar] [CrossRef]
- Arie, T. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. J. Pestic. Sci. 2019, 44, 275–281. [Google Scholar] [CrossRef]
- Fernandes, C.; Casadevall, A.; Gonçalves, T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol. Rev. 2023, 47, fuad061. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Tian, Y.; Tan, Y.L.; Liu, N.; Yan, Z.; Liao, Y.C.; Chen, J.; de Saeger, S.; Yang, H.; Zhang, Q.Y.; Wu, A.B. Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins 2016, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Panthee, S.; Hamamoto, H.; Paudel, A.; Sekimizu, K. Lysobacter species: A potential source of novel antibiotics. Arch. Microbiol. 2016, 198, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Fulano, A.M.; Shen, D.Y.; Kinoshita, M.; Chou, S.H.; Qian, G.L. The homologous components of flagellar type iii protein apparatus have acquired a novel function to control twitching motility in a non-flagellated biocontrol bacterium. Biomolecules 2020, 10, 733. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhang, P.F.; Trivedi, P.; Riera, N.; Wang, Y.Y.; Liu, X.; Fan, G.Y.; Tang, J.L.; Coletta, H.D.; et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 2018, 9, 4894. [Google Scholar] [CrossRef]
- Brescia, F.; Pertot, I.; Puopolo, G. Chapter 16—Lysobacter. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 313–338. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, M.M.; Shen, D.Y.; Han, S.; Fulano, A.M.; Chou, S.H.; Qian, G.L. A non-flagellated biocontrol bacterium employs a PilZ-PilB complex to provoke twitching motility associated with its predation behavior. Phytopathol. Res. 2020, 2, 12. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; Ksenofontova, N.; Zinyakova, N.B.; van Bruggen, A.H.C. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? J. Environ. Manag. 2021, 294, 113018. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.; Schilder, M.T.; Bloem, J.; van Leeumen-Haagsma, W.K. Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol. Biochem. 2008, 40, 2394–2406. [Google Scholar] [CrossRef]
- De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification. Water Res. 2020, 185, 116223. [Google Scholar] [CrossRef]
- Wang, Y.L.; Niu, Q.G.; Zhang, X.; Liu, L.; Wang, Y.B.; Chen, Y.Q.; Negi, M.; Figeys, D.; Li, Y.Y.; Zhang, T. Exploring the effects of operational mode and microbial interactions on bacterial community assembly in a one-stage partial-nitritation anammox reactor using integrated multi-omics. Microbiome 2019, 7, 122. [Google Scholar] [CrossRef]
- Elabyad, M.S.; Elsayed, M.A.; Elshanshoury, A.R.; Elsabbagh, S.M. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 1993, 149, 185–195. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Jung, H.; Koo, B.K.; Han, J.A.; Lee, H.S. Exploiting bacterial genera as biocontrol agents: Mechanisms, interactions and applications in sustainable agriculture. J. Plant Biol. 2023, 66, 485–498. [Google Scholar] [CrossRef]
- Goudjal, Y.; Toumatia, O.; Sabaou, N.; Barakate, M.; Mathieu, F.; Zitouni, A. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: Indole-3-acetic acid production and tomato plants growth promoting activity. World J. Microbiol. Biotechnol. 2013, 29, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Som, N.F.; Heine, D.; Holmes, N.; Knowles, F.; Chandra, G.; Seipke, R.F.; Hoskisson, P.A.; Wilkinson, B.; Hutchings, M.I. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3 (2). Microbiology 2017, 163, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.Y.; Li, Z.; Fu, Y.H.; Wen, Y.P.; Wei, S.J. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211. J. Basic. Microbiol. 2018, 58, 686–697. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, V. Chapter 15—Bioactive compounds of Streptomyces: Biosynthesis to applications. In Studies in Natural Products Chemistry; Rahman, A.U., Ed.; Academic Press: Amsterdam, The Netherlands, 2020; Volume 64, pp. 467–491. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, R.J.; Gao, J.S.; Wang, X.C.; Fan, F.L.; Ma, X.T.; Yin, H.Q.; Zhang, C.W.; Feng, K.; Deng, Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol. Biochem. 2017, 104, 208–217. [Google Scholar] [CrossRef]
- Lin, D.; Xu, J.Y.; Wang, L.; Du, S.; Zhu, D. Long-term application of organic fertilizer prompting the dispersal of antibiotic resistance genes and their health risks in the soil plastisphere. Environ. Int. 2024, 183, 108431. [Google Scholar] [CrossRef]
- Chen, D.L.; Wang, X.X.; Zhang, W.; Zhou, Z.G.; Ding, C.F.; Liao, Y.W.K.; Li, X.G. Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community. Plant Soil. 2020, 452, 313–328. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Lopes, S.A.; de Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of citrus huanglongbing spread and management strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Chang, S.X.; Shen, Y.Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.M.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
Treatment | pH | SOC (g kg−1) | TN (g/kg) | TP (g/kg) | AN (mg/kg) | NN (mg/kg) | AK (mg/kg) | AP (mg/kg) |
---|---|---|---|---|---|---|---|---|
Monoculture | 5.56 ± 0.23 b | 27.85 ± 6.41 a | 1.50 ± 0.24 b | 0.62 ± 0.08 a | 2.17 ± 0.09 c | 9.54 ± 1.31 a | 7.79 ± 0.90 a | 23.18 ± 2.18 b |
V. villosa | 6.45 ± 0.13 a | 36.24 ± 2.26 a | 2.62 ± 0.05 a | 0.68 ± 0.05 a | 3.15 ± 0.17 b | 12.36 ± 1.78 a | 13.31 ± 1.96 a | 33.62 ± 1.94 a |
M. sativa | 6.27 ± 0.11 a | 26.80 ± 9.40 a | 2.23 ± 0.22 a | 0.66 ± 0.05 a | 4.13 ± 0.22 a | 11.67 ± 1.11 a | 11.72 ± 2.59 a | 33.49 ± 3.52 a |
p-value | 0.009 | 0.571 | 0.007 | 0.526 | <0.001 | 0.386 | 0.174 | 0.032 |
Fungi | Control | V. villosa | M. sativa | p-Value |
richness | 815 ± 44 a | 737 ± 41 a | 717 ± 83 a | 0.494 |
Chao1 | 821.64 ± 46.32 a | 739.35 ± 41.46 a | 723.99 ± 85.57 a | 0.504 |
ACE | 823.43 ± 46.08 a | 739.95 ± 41.45 a | 725.83 ± 85.17 a | 0.499 |
Shannon | 4.76 ± 0.09 a | 4.46 ± 0.12 ab | 4.22 ± 0.2 b | 0.075 |
Simpson | 0.97 ± 0 a | 0.94 ± 0.01 a | 0.94 ± 0.01 a | 0.093 |
Bacteria | Control | V. villosa | M. sativa | p-Value |
Richness | 1927 ± 78.86 a | 2110 ± 77.73 a | 1787 ± 154.39 a | 0.169 |
Chao1 | 1931.41 ± 80.89 a | 2120.3 ± 78.46 a | 1792.33 ± 154.96 a | 0.165 |
ACE | 1934.31 ± 81.34 a | 2121.76 ± 79.66 a | 1795.92 ± 154.95 a | 0.170 |
Shannon | 6.9235 ± 0.05 a | 7.0616 ± 0.06 a | 6.6355 ± 0.25 a | 0.180 |
Simpson | 1 ± 0.00 a | 1 ± 0.00 a | 0.99 ± 0.00 a | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Jing, Y.; Wang, Y.; Zheng, R.; Xu, Q.; Sun, Z.; Duan, T. Leguminous Green Manure Intercropping Promotes Soil Health in a Citrus (Citrus reticulata) Orchard. Agriculture 2024, 14, 1897. https://doi.org/10.3390/agriculture14111897
Xie Y, Jing Y, Wang Y, Zheng R, Xu Q, Sun Z, Duan T. Leguminous Green Manure Intercropping Promotes Soil Health in a Citrus (Citrus reticulata) Orchard. Agriculture. 2024; 14(11):1897. https://doi.org/10.3390/agriculture14111897
Chicago/Turabian StyleXie, Yuxin, Yulin Jing, Yajie Wang, Rongchun Zheng, Qiurui Xu, Zhenyu Sun, and Tingyu Duan. 2024. "Leguminous Green Manure Intercropping Promotes Soil Health in a Citrus (Citrus reticulata) Orchard" Agriculture 14, no. 11: 1897. https://doi.org/10.3390/agriculture14111897
APA StyleXie, Y., Jing, Y., Wang, Y., Zheng, R., Xu, Q., Sun, Z., & Duan, T. (2024). Leguminous Green Manure Intercropping Promotes Soil Health in a Citrus (Citrus reticulata) Orchard. Agriculture, 14(11), 1897. https://doi.org/10.3390/agriculture14111897