Digital Analysis with the Help of an Integrated UAV System for the Surveillance of Fruit and Wine Areas
Abstract
:1. Introduction
- (a)
- Designing adaptive hardware and software architectures for UV-B radiation monitoring systems;
- (b)
- Ensuring compliance with local regulations regarding the use of drones and specialized sensors, as well as decision-support procedures and rules under conditions of uncertainty;
- (c)
- Storing data in an easily accessible and analyzable format, preferably with location and time metadata for seamless integration into GIS systems.
2. Materials and Methods
2.1. Route Planning
2.2. Hardware Components
2.2.1. The VEML6075 Sensor
2.2.2. UPS HAT Waveshare 19739
2.2.3. The Raspberry Pi Zero 2 W
2.2.4. The DJI Mini 4 Pro
2.2.5. The Modular Proposed Prototype
2.2.6. Data Processing and Storage Within the Modular System
2.2.7. The Open-Source Platform WebODM
3. Results and Discussion
3.1. Photogrammetry
3.2. UV Radiation
3.3. Flight Performance Analysis
- -
- Data collection accuracy, determining the precision of UV radiation measurements and other environmental parameters compared to certified reference devices;
- -
- Operational reliability, assessing the system’s ability to repeatedly collect precise data, including during overloaded flight conditions and in various environmental conditions (temperature, humidity, etc.);
- -
- Autonomy and energy consumption during flights, and the energy efficiency of system components, such as sensors and the Raspberry Pi module.
- -
- Ease of implementation from the perspective of farmers, showing how quickly and easily the modules can be mounted and configured on a commercial drone.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hung, C.; Xu, Z.; Sukkarieh, S. Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV. Remote Sens. 2014, 6, 12037–12054. [Google Scholar] [CrossRef]
- Malveaux, C.; Hall, S.G.; Price, R. Using drones in agriculture: Unmanned aerial systems for agricultural remote sensing applications. In Proceedings of the American Society of Agricultural and Biological Engineers, Montreal, QC, Canada, 13–16 July 2014; p. 141911016. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Popescu, D.; Vlasceanu, E.; Dima, M.; Stoican, F.; Ichim, L. Hybrid sensor network for monitoring environmental parameters. In Proceedings of the 28th Mediterranean Conference on Control and Automation (MED), Saint-Raphaël, France, 15–18 September 2020; pp. 933–938. [Google Scholar] [CrossRef]
- Stamate, M.A.; Pupaza, C.; Nicolescu, F.A.; Moldoveanu, C.E. Improvement of Hexacopter UAVs Attitude Parameters Employing Control and Decision Support Systems. Sensors 2023, 23, 1446. [Google Scholar] [CrossRef]
- Digulescu, A.; Despina-Stoian, C.; Popescu, F.; Stanescu, D.; Nastasiu, D.; Sburlan, D. UWB Sensing for UAV and Human Comparative Movement Characterization. Sensors 2023, 23, 1956. [Google Scholar] [CrossRef] [PubMed]
- Popescu, D.; Ichim, L.; Stoican, F. Orchard monitoring based on unmanned aerial vehicles and image processing by artificial neural networks: A systematic review. Front. Plant Sci. 2023, 14, 1237695. [Google Scholar] [CrossRef]
- Signing, V.R.F.; Taamte, J.M.; Noube, M.K.; Abanda, Z.S.O.; Abba, H.Y. Real-time environmental radiation monitoring based on locally developed low-cost device and unmanned aerial vehicle. J. Instrum. 2023, 18, P05031. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Min, B.I.; Suh, K.S.; Joung, S.; Kim, K.P.; Park, J.H. Technical Status of Environmental Radiation Monitoring using a UAV and Its Field Application to the Aerial Survey. J. Korea Soc. Ind. Inf. Syst. 2020, 25, 31–39. [Google Scholar] [CrossRef]
- Kezoudi, M.; Keleshis, C.; Antoniou, P.; Biskos, G.; Bronz, M.; Constantinides, C.; Sciare, J. The Unmanned Systems Research Laboratory (USRL): A new facility for UAV-based atmospheric observations. Atmosphere 2021, 12, 1042. [Google Scholar] [CrossRef]
- Dou, H.; Niu, G.; Gu, M. Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy 2019, 9, 434. [Google Scholar] [CrossRef]
- Cambrolle, J.; García, J.L.; Ocete, R.; Figueroa, M.E.; Cantos, M. Growth and photosynthetic responses to copper in wild grapevine. Chemosphere 2013, 93, 294–301. [Google Scholar] [CrossRef]
- Bonilla, V.; Campoverde, B.; Yoo, S.G. A Systematic Literature Review of LoRaWAN: Sensors and Applications. Sensors 2023, 23, 8440. [Google Scholar] [CrossRef] [PubMed]
- Teramura, A.H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant. 1983, 58, 415–427. [Google Scholar] [CrossRef]
- Kramer, G.F.; Krizek, D.T.; Mirecki, R.M. Influence of photosynthetically active radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochemistry 1992, 31, 1119–1125. [Google Scholar] [CrossRef]
- Mirecki, R.M.; Teramura, A.H. Effects of ultraviolet-B irradiance on soybean: V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 1984, 74, 475–480. [Google Scholar] [CrossRef]
- Longo-Minnolo, G.; Consoli, S.; Vanella, D.; Guarrera, S.; Manetto, G.; Cerruto, E. Appraising the stem water potential of citrus orchards from UAV-based multispectral imagery. In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Pisa, Italy, 6–8 November 2023; pp. 120–125. [Google Scholar] [CrossRef]
- Shakya, S. Unmanned Aerial Vehicle with Thermal Imaging for Automating Water Status in Vineyard. J. Electr. Eng. Autom. 2021, 3, 79–91. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis. Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Kasimati, A.; Lomis, A.; Psiroukis, V.; Darra, N.; Koutsiaras, M.G.; Papadopoulos, G.; Fountas, S. Chapter 5: Unmanned aerial systems applications in orchards and vineyards. In Unmanned Aerial Systems in Agriculture; Academic Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Ipate, G.; Voicu, G.; Dinu, I. Research on the use of drones in precision agriculture. Univ. Politeh. Buchar. Bull. Ser. 2015, 77, 1–12. [Google Scholar]
- Al-Mayyahi, A.; Aldair, A.A.; Rashid, A.T. Intelligent Control of Mobile Robot Via Waypoints Using Nonlinear Model Predictive Controller and Quadratic Bezier Curves Algorithm. J. Electr. Eng. Technol. 2020, 15, 1857–1870. [Google Scholar] [CrossRef]
- Choi, J.; Elkaim, G.H. Bezier Curve for Trajectory Guidance. In Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, San Francisco, CA, USA, 22–24 October 2008. [Google Scholar]
- Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar] [CrossRef]
- Lai, R.; Wu, Z.; Liu, X.; Zeng, N. Fusion Algorithm of the Improved A* Algorithm and Segmented Bézier Curves for the Path Planning of Mobile Robots. Sustainability 2023, 15, 2483. [Google Scholar] [CrossRef]
- Jiang, J. High Altitude Balloon. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2020. [Google Scholar]
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Van de Giesen, N.; Steele-Dunne, S.C.; Jansen, J.; Hoes, O.; Hausner, M.B.; Tyler, S.; Selker, J. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2012, 12, 5471–5485. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Cicioni, G.; De Angelis, A.; Janeiro, F.M.; Ramos, P.M.; Carbone, P. Battery Impedance Spectroscopy Embedded Measurement System. Batteries 2023, 9, 577. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, M.; Liu, X.; Cui, Y.; Hu, H.; Li, Q.; Jin, M.; Xian, J.; Nie, Z.; Zhang, C. Three-in-One Portable Electronic Sensory System Based on Low-Impedance Laser-Induced Graphene On-Skin Electrode Sensors for Electrophysiological Signal Monitoring. Adv. Mater. Interfaces 2023, 10, 2201735. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, D.; Li, M.; Ren, X.; Yuan, X.; Tang, L.; Wang, X.; Liu, S.; Yang, M.; Liu, Y.; et al. Design and Verification of Piano Playing Assisted Hand Exoskeleton Robot. Biomimetics 2024, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Monahan, R.; Casey, K. Power Consumption Profiling of a Lightweight Development Board: Sensing with the INA219 and Teensy 4.0 Microcontroller. Electronics 2021, 10, 775. [Google Scholar] [CrossRef]
- Maroşan, A.; Constantin, G.; Gîrjob, C.E.; Chicea, A.L.; Crenganis, M. Real time data acquisition of low-cost current sensors acs712-05 and ina219 using raspberry pi, daqcplate and node-red. Proc. Manuf. Syst. 2023, 18, 51–59. [Google Scholar]
- Huang, K.; Li, Z.; Yang, C. Design of Battery System of Emergency Power Supply for Auxiliary Fan in the Coal-Mine. In Proceedings of the International Conference on Control, Automation and Systems Engineering (CASE), Singapore, 30–31 July 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Guo, C.-Y.; Lin, T.-L.; Hsieh, T.-L. A Solar-Rechargeable Radiation Dosimeter Design for Radiation Hazard Zone Located with LoRa Network. Quantum Beam Sci. 2022, 6, 27. [Google Scholar] [CrossRef]
- Stoica, D.; Gmal Osman, M.; Strejoiu, C.V.; Lazaroiu, G. Exploring Optimal Charging Strategies for Off-Grid Solar Photovoltaic Systems: A Comparative Study on Battery Storage Techniques. Batteries 2023, 9, 470. [Google Scholar] [CrossRef]
- Yamanoor, N.S.; Yamanoor, S. High quality, low cost education with the Raspberry Pi. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Sunehra, D.; Jhansi, B.; Sneha, R. Smart Robotic Personal Assistant Vehicle Using Raspberry Pi and Zero UI Technology. In Proceedings of the 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Schwart, M. Building Smart Homes with Raspberry Pi Zero; Packt Publishing Ltd.: Birmingham, UK, 2016. [Google Scholar]
- Alarcón-Paredes, A.; Francisco-García, V.; Guzmán-Guzmán, I.P.; Cantillo-Negrete, J.; Cuevas-Valencia, R.E.; Alonso-Silverio, G.A. An IoT-based non-invasive glucose level monitoring system using raspberry pi. Appl. Sci. 2019, 9, 3046. [Google Scholar] [CrossRef]
- Halfacree, G. The Official Raspberry Pi Beginner’s Guide: How to Use Your New Computer, 5th ed.; Raspberry Pi Press: Cambrige, UK, 2023. [Google Scholar]
- Janakiram, S.; Babu, M.; Jain, S.; Rai, R.; Mohan, R.; Safonova, M.; Murthy, J. Development Of Raspberry Pi-based Processing Unit for UV Photon-Counting Detectors. arXiv 2024, arXiv:2401.01443v2. [Google Scholar] [CrossRef]
- Sona, G.; Passoni, D.; Pinto, L.; Pagliari, D.; Masseroni, D.; Ortuani, B.; Facchi, A. UAV multispectral survey to map soil and crop for precision farming applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1023–1029. [Google Scholar] [CrossRef]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy Assessment of Different Digital Surface Models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. [Google Scholar] [CrossRef]
- Kim, S.; Rhee, S.; Kim, T. Digital Surface Model Interpolation Based on 3D Mesh Models. Remote Sens. 2019, 11, 24. [Google Scholar] [CrossRef]
- Lu, Z.; Deng, L.; Lu, H. An improved LAI estimation method incorporating with growth characteristics of field-grown wheat. Remote Sens. 2022, 14, 4013. [Google Scholar] [CrossRef]
- Thanyapraneedkul, J.; Muramatsu, K.; Daigo, M.; Furumi, S.; Soyama, N.; Nasahara, K.N.; Muraoka, H.; Noda, H.M.; Nagai, S.; Maeda, T.; et al. A Vegetation Index to Estimate Terrestrial Gross Primary Production Capacity for the Global Change Observation Mission-Climate (GCOM-C)/Second-Generation Global Imager (SGLI) Satellite Sensor. Remote Sens. 2012, 4, 3689–3720. [Google Scholar] [CrossRef]
- Ribeiro, A.L.A.; Macie, G.M.; Siquieroli, A.C.S.; Luz, J.M.Q.; Gallis, R.B.d.A.; Assis, P.H.d.S.; Catão, H.C.R.M.; Yada, R.Y. Vegetation Indices for Predicting the Growth and Harvest Rate of Lettuce. Agriculture 2023, 13, 1091. [Google Scholar] [CrossRef]
- Ngo Thi, D.; Ha, N.T.T.; Tran Dang, Q.; Koike, K.; Mai Trong, N. Effective band ratio of landsat 8 images based on VNIR-SWIR reflectance spectra of topsoils for soil moisture mapping in a tropical region. Remote Sens. 2019, 11, 716. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Gastellu-Etchegorry, J.P. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Zhu, Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef]
- Fornacca, D.; Re, G.; Xiao, W. Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. [Google Scholar] [CrossRef]
- Han, A.; Qing, S.; Bao, Y.; Na, L.; Bao, Y.; Liu, X.; Wang, C. Short-term effects of fire severity on vegetation based on sentinel-2 satellite data. Sustainability 2021, 13, 432. [Google Scholar] [CrossRef]
- Sunny, A.I.; Zhao, A.; Li, L.; Sakiliba, S.K. Low-cost IoT-based sensor system: A case study on harsh environmental monitoring. Sensors 2020, 21, 214. [Google Scholar] [CrossRef]
- Goumopoulos, C. A high precision, wireless temperature measurement system for pervasive computing applications. Sensors 2018, 18, 3445. [Google Scholar] [CrossRef] [PubMed]
- Heath, M. UV-Spectrum Remote UVA Imaging for Use in Precision Agriculture. Ph.D. Thesis, École de Technologie Supérieure, Montreal, QC, Canada, 2023. [Google Scholar]
- Wiyadi, E.; Wati, A.; Hamzah, Y.; Umar, L. Simple IV acquisition module with high side current sensing principle for real time photovoltaic measurement. J. Phys. Conf. Ser. 2020, 1528, 012040. [Google Scholar] [CrossRef]
- Prasetyawati, F.Y.; Harjunowibowo, D.; Fauzi, A.; Utomo, B.; Harmanto, D. Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression. AIUB J. Sci. Eng. (AJSE) 2023, 22, 240–249. [Google Scholar] [CrossRef]
- Athanasadis, C.; Doukas, D.; Papadopoulos, T.; Chrysopoulos, A. A scalable real-time non-intrusive load monitoring system for the estimation of household appliance power consumption. Energies 2021, 14, 767. [Google Scholar] [CrossRef]
- Khudhair, A.B.; Hussein, F.I.; Obeidi, M.A. Creating a LabVIEW Sub VI for the INA219 sensor for detecting extremely low-level electrical quantities. Al-Khwarizmi Eng. J. 2023, 19, 88–97. [Google Scholar] [CrossRef]
- Upadhyay, J.; Rawat, A.; Deb, D. Multiple drone navigation and formation using selective target tracking-based computer vision. Electronics 2021, 10, 2125. [Google Scholar] [CrossRef]
- Liu, S.; Lu, H.; Hwang, S.H. Three-Dimensional Indoor Positioning Scheme for Drone with Fingerprint-Based Deep-Learning Classifier. Drones 2024, 8, 15. [Google Scholar] [CrossRef]
- Stamate, M.A.; Nicolescu, F.A.; Pupaza, C. Study regarding flight autonomy estimation for hexacopter drones in various equipment configurations. Proc. Manuf. Syst. 2020, 15, 81–90. [Google Scholar]
- Chu, T.; Starek, M.J.; Berryhill, J.; Quiroga, C.; Pashaei, M. Simulation and characterization of wind impacts on UAS flight performance for crash scene reconstruction. Drones 2021, 5, 67. [Google Scholar] [CrossRef]
- Doroftei, D.; De Cubber, G.; Bue, S.L.; De Smet, H. Quantitative Assessment of Drone Pilot Performance. Drones 2024. preprint. [Google Scholar] [CrossRef]
Description | Specifications |
---|---|
Output voltage | 5 V |
Charger | 5 V |
Control bus | I2C |
Battery | 803040 Li-po 1000 mAh 3.7 V |
Mounting hole size | 3 mm |
Dimensions | 65 × 30 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ipate, G.; Tudora, C.; Ilie, F. Digital Analysis with the Help of an Integrated UAV System for the Surveillance of Fruit and Wine Areas. Agriculture 2024, 14, 1930. https://doi.org/10.3390/agriculture14111930
Ipate G, Tudora C, Ilie F. Digital Analysis with the Help of an Integrated UAV System for the Surveillance of Fruit and Wine Areas. Agriculture. 2024; 14(11):1930. https://doi.org/10.3390/agriculture14111930
Chicago/Turabian StyleIpate, George, Catalina Tudora, and Filip Ilie. 2024. "Digital Analysis with the Help of an Integrated UAV System for the Surveillance of Fruit and Wine Areas" Agriculture 14, no. 11: 1930. https://doi.org/10.3390/agriculture14111930
APA StyleIpate, G., Tudora, C., & Ilie, F. (2024). Digital Analysis with the Help of an Integrated UAV System for the Surveillance of Fruit and Wine Areas. Agriculture, 14(11), 1930. https://doi.org/10.3390/agriculture14111930