Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Operating Principle
2.1.1. Overall Structure
2.1.2. Operating Principle
2.1.3. Principle of Seeding Rate Adjustment
2.2. Key Component Design
2.2.1. Design of the Adjustable Multi-Hole Seed Metering Disc
2.2.2. Design of the Branched Air Chamber Casing
2.3. Simulation Test Methods
2.3.1. Evaluation Metrics
2.3.2. Simulation Test Setup
2.3.3. Single-Factor Simulation Test Method
2.3.4. Orthogonal Simulation Test Method
2.3.5. Verification Test Method
2.4. Bench Test Method
2.4.1. Test Bench Setup
2.4.2. Evaluation Criteria
2.4.3. Single-Factor Bench Test
- (1)
- Test on Number of Open Holes
- (2)
- Single Factor Test of Negative Pressure in Work
- (3)
- Test on Working Vacuum Pressure
2.4.4. Regression-Orthogonal Design Methodology
- (1)
- Test Method
- (2)
- Regression Method
- (3)
- Multi-Objective Optimization Method
- (4)
- Validation Test Method
3. Results
3.1. Simulation Test Results
3.1.1. Single-Factor Simulation Test Results
3.1.2. Orthogonal Simulation Test Results
3.1.3. Verification Test Results
3.2. Bench Test Results
3.2.1. Single Factor Bench Test Results
3.2.2. Regression-Orthogonal Test Results
- (1)
- Test Results
- (2)
- Regression Results
- (3)
- Multi-objective Optimization Results
- (4)
- Validation Test Results
4. Discussion
4.1. Impact of Seed Metering Device Structural Parameters on p and CVp
4.1.1. Air Chamber Depth
4.1.2. Air Chamber Angle
4.1.3. Air Cavity Depth
4.2. Impact of Operational Parameters of the Seed Metering Device on Seeding Accuracy
4.2.1. Number of Openings
4.2.2. Working Negative Pressure and Rotor Speed
- (1)
- Impact on Missed Seeding Rate
- (2)
- Impact on Re-seeding Rate
- (3)
- Impact on Qualification Rate
5. Conclusions
- (1)
- A force dynamics model for rice seeds was established to analyze the forces on seeds during the suction process by the metering device. A relationship between the negative pressure and diameter of the suction pores was derived, leading to a designed pore diameter of 1.44 mm. Based on this pore type, the minimum critical negative pressure required for stable seed adhesion was calculated to be 800 Pa.
- (2)
- Using Ansys-Fluent software, a CFD domain single-factor and an L9 (34) orthogonal test were conducted on the branched air chamber casing. The results showed that the maximum vacuum pressure in the seed metering disc pores was 857 Pa when the chamber depth was 22 mm, the chamber angle was 100°, and the chamber cavity depth was 25 mm, with the smallest coefficient of variation at 0.86%. Under these optimized conditions, a simulation verification test was conducted. The results indicated that the negative pressure at each suction pore was significantly higher than the minimum critical negative pressure of 800 Pa required for stable seed adhesion, thus confirming the optimized structure of the branched air chamber casing based on simulation results.
- (3)
- Based on the branched air chamber casing design, and targeting seeding goals of 1–3, 2–4, and 5–8 seeds per hole, the bench tests used missed seeding rate, qualification rate, and re-seeding rate as test indices, with the number of openings, working negative pressure, and rotor speed as test factors. Single-factor test results identified the best number of openings as 2, 3, and 6, with an optimal working negative pressure range of 1000–1600 Pa, and an optimal rotor speed range of 20–40 r/min. Based on the regression orthogonal test results, the following conclusions were drawn: For seeding goals of 1–3 seeds per hole, the optimal operational parameters were a working negative pressure of 1355 Pa and a rotor speed of 32.78 r/min, resulting in a missed seeding rate of 4.70%, a qualification rate of 85.81%, and a re-seeding rate of 9.49%. For seeding goals of 2–4 seeds per hole, the optimal parameters were a working negative pressure of 1357 Pa and a rotor speed of 32.87 r/min, resulting in a missed seeding rate of 4.60%, a qualification rate of 85.59%, and a re-seeding rate of 9.81%. For seeding goals of 5–8 seeds per hole, the best parameters were a working negative pressure of 1339 Pa and a rotor speed of 31.07 r/min, with a missed seeding rate of 4.09%, a qualification rate of 87.27%, and a re-seeding rate of 8.64%. The study demonstrates that the seed metering device can effectively meet the varied direct seeding requirements of rice.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhokar, R.S.; Sharma, R.K.; Gathala, M.K.; Pundir, A.K. Effects of crop establishment techniques on weeds and rice yield. Crop Prot. 2014, 64, 7–12. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S.; Gill, M.S. Dry-seeded rice culture in Punjab State of India: Lessons learned from farmers. Field Crops Res. 2013, 144, 89–99. [Google Scholar] [CrossRef]
- Rao, A.N.; Brainard, D.C.; Kumar, V. Preventive weed management in direct-seeded rice: Targeting the weed seed bank. Adv. Agron. 2017, 144, 45–142. [Google Scholar]
- Mishra, A.K.; Khanal, A.R.; Pede, V.O. Is direct seeded rice a boon for economic performance? Empirical evidence from India. Food Policy 2017, 73, 10–18. [Google Scholar] [CrossRef]
- Kumar, V.; Laddha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Luo, X.; Wang, Z.; Zeng, S.; Zang, Y.; Yang, W.; Zhang, M. Recent advances in mechanized direct seeding technology for rice. J. South China Agric. Univ. 2019, 40, 1–13. [Google Scholar]
- Zang, Y.; He, S.; Wang, Z.; Liu, S.; Wang, X.; Wen, Z. Design of pneumatic single seed metering device for coated hybrid rice. Trans. CSAE 2021, 37, 10–18. [Google Scholar]
- Xing, H.; Wang, Z.; Luo, X.; Cao, X.; Liu, C.; Zang, Y. General structure design and field experiment of pneumatic rice direct-seeder. J. Agric. Biol. Int. Eng. 2017, 10, 31–42. [Google Scholar]
- Xing, H.; Wang, Z.; Luo, X.; Zang, Y.; Yang, W.; Zhang, M.; Ma, Y. Design of an active seed throwing and cleaning unit for pneumatic rice seed metering device. Int. J. Agric. Biol. Eng. 2018, 11, 62–69. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z.; Luo, X.; Zang, Y.; Yang, W.; Xing, H.; Wang, B.; Dai, Y. Review of precision rice hill-drop drilling technology and machine for paddy. Int. J. Agric. Biol. Eng. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Zheng, T.; Tang, X.; Luo, X.; Li, G.; Wang, Z.; Shu, S.; Chen, W. Effects of different irrigation methods on production of precision hill-direct-seeding super rice. Trans. CSAE 2010, 26, 52–55. [Google Scholar]
- Zeng, X. The Research in Mechanization Planting Ways and Seeding Ratios at Different Early Direct Seeding Rice. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2013. [Google Scholar]
- Tang, H.; Xu, F.; Guan, T.; Xu, C.; Wang, J. Design and test of a pneumatic type of high-speed maize precision seed metering device. Comput. Electron. Agric. 2023, 211, 107997. [Google Scholar] [CrossRef]
- Du, X.; Liu, C. Design and testing of the filing plate of inner-filling positive pressure high-speed seed -metering device for maize. Biosyst. Eng. 2023, 228, 1–17. [Google Scholar] [CrossRef]
- Luo, X.; Liu, T.; Jing, E.; Li, Q. Design and experiment of hill sowing wheel of precision rice direct-seeder. Trans. CSAE 2007, 23, 108–112. [Google Scholar]
- Tian, L.; Wang, J.; Tang, H.; Li, S.; Zhou, W.; Shen, H. Design and performance experiment of helix grooved rice seeding device. Trans. Chin. Soc. Agric. Mach. 2016, 47, 46–52. [Google Scholar]
- Shi, S.; Liu, H.; Wei, G.; Zhou, J.; Jian, S.; Zhang, R. Optimization and experiment of pneumatic seed metering device with guided assistant filing based on EDEM-CFD. Trans. Chin. Soc. Agric. Mach. 2020, 51, 54–66. [Google Scholar]
- Zhang, X.; Cheng, J.; Shi, Z.; Wang, M.; Fu, H.; Wu, H. Simulation and experiment of seed taking performance of swing-clamp type maize precision seed-metering device. Trans. Chin. Soc. Agric. Mach. 2023, 54, 38–50. [Google Scholar]
- Wang, Z.; Huang, Y.; Wang, B.; Zang, M.; Ma, R.; Ke, R.; Luo, X. Design and experiment of rice precision metering device with sowing amountstepless adjusting. Trans. CSAE 2018, 34, 9–16. [Google Scholar]
- Zang, Y.; Huang, Z.; Qin, W.; He, S.; Qian, C.; Jiang, Y.; Tao, W.; Zhang, M.; Wang, Z. Design of hybrid rice air-suction single seed metering device. Trans. CSAE 2024, 40, 181–191. [Google Scholar]
- Xing, H.; Zang, Y.; Wang, Z.; Luo, X.; Zhang, M.; Fang, L. Design and experimental analysis of a stirring device for a pneumatic precision rice seed metering device. Trans. ASABE 2020, 63, 799–808. [Google Scholar] [CrossRef]
- Xing, H.; Wang, Z.; Luo, X.; He, H.; Zang, Y. Mechanism modeling and experimental analysis of seed throwing with rice pneumatic seed metering device with adjustable seeding rate. Comput. Electron. Agric. 2020, 178, 105697. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, S.; Yang, W.; Lu, K.; Lei, Z.; Yang, M. Design and experiment of double cavity side-filled precision hole seed metering device for rice. Trans. CSAE 2016, 32, 9–17. [Google Scholar]
- Zhang, M.; Luo, X.; Wang, Z.; Dai, Y.; Wang, B.; Zheng, L. Design and experiment of combined hole-type metering device of rice hill-drop drilling machine. Trans. Chin. Soc. Agric. Mach. 2016, 47, 29–36. [Google Scholar]
- Zhang, S.; He, H.; Yuan, Y.; Kang, F.; Xiong, W.; Li, Z.; Zhu, D. Design and experiment of the orifice-groove combined hole of the oriented filling type precision hill-drop seed-metering device for rice. Trans. CSAE 2023, 39, 39–50. [Google Scholar]
- Xing, H.; Zhang, G.; Han, Y. Development and experiment of double cavity pneumatic rice precision direct seeder. Trans. CSAE 2020, 36, 29–37. [Google Scholar]
- Luo, X.; Jiang, E.; Wang, Z.; Tang, X.; Li, J.; Chen, X. Precision rice hill-drop drilling machine. Trans. CSAE 2008, 24, 52–56. [Google Scholar]
- Zhang, X. Agricultural Machinery Design Manual, 1st ed.; China Agricultural Science and Technology Press: Beijing, China, 2007; pp. 355–360. [Google Scholar]
- Zhai, J. Design and Experiment of Pneumatic Precision Hill-Drop Drilling Seed Metering Device for Rice Budded Seed. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2015. [Google Scholar]
- Xing, H.; Zang, Y.; Wang, Z.; Zhang, G.; Cao, X.; Gu, X. Design and experiment of filling seed stratified room on rice pneumatic metering device. Trans. CSAE 2015, 31, 42–48. [Google Scholar]
- Zha, X.; Zhang, G.; Han, Y.; Fu, J.; Zhou, Y. Design and optimization of centralized pneumatic fertilizer transporting system for deep fertilization device in paddy field. Int. J. Fluid Mach. Syst. 2021, 14, 309. [Google Scholar] [CrossRef]
- Xing, H.; Zang, Y.; Wang, Z.; Luo, X.; Pei, J.; He, S.; Xu, P.; Liu, C. Design and parameter optimization of rice pneumatic seeding metering device with adjustable seeding rate. Trans. CSAE 2019, 35, 20–28. [Google Scholar]
Level | Air Chamber Depth/mm | Air Chamber Angle/(°) | Air Cavity Depth/mm |
---|---|---|---|
1 | 14, 16, 18, 20, 22 | 100 | 25 |
2 | 22 | 90, 100, 110, 120, 130 | 25 |
3 | 22 | 100 | 15, 17.5, 20, 22.5, 25 |
Level | Air Chamber Depth A/mm | Air Chamber Angle B/(°) | Air Cavity Depth C/mm |
---|---|---|---|
1 | 18 | 90 | 20 |
2 | 20 | 100 | 22.5 |
3 | 22 | 110 | 25 |
Test No. | Factors | p/Pa | CVp/% | |||
---|---|---|---|---|---|---|
A | B | C | ||||
1 | 1 | 1 | 1 | 691 | 1.14 | |
2 | 1 | 2 | 2 | 734 | 1.02 | |
3 | 1 | 3 | 3 | 752 | 1.65 | |
4 | 2 | 1 | 2 | 742 | 1.09 | |
5 | 2 | 2 | 3 | 775 | 0.95 | |
6 | 2 | 3 | 1 | 721 | 1.56 | |
7 | 3 | 1 | 3 | 852 | 1.07 | |
8 | 3 | 2 | 1 | 798 | 0.90 | |
9 | 3 | 3 | 2 | 825 | 1.43 | |
p | k1 | 726 | 762 | 737 | ||
k2 | 746 | 769 | 767 | |||
k3 | 825 | 766 | 793 | |||
R | 99 | 7 | 56 | |||
Primary and Secondary Order | A > C > B | |||||
Optimized combination | A3B2C3 | |||||
CV | k1 | 1.27 | 1.10 | 1.20 | ||
k2 | 1.20 | 0.96 | 1.18 | |||
k3 | 1.13 | 1.54 | 1.22 | |||
R | 0.14 | 0.58 | 0.04 | |||
Primary and Secondary Order | B > A > C | |||||
Optimized combination | A3B2C2 |
Level | Working Pressure X1/Pa | Working Speed X2/(r/min−1) |
---|---|---|
1 | 1000 | 20 |
2 | 1300 | 30 |
3 | 1600 | 40 |
Code | Working Pressure X1/Pa | Working Speed X2/(r/min−1) |
---|---|---|
r(X2j) | 1600 | 40 |
1(X0j + Δj) | 1547.93 | 38.26 |
0(X0j) | 1300 | 30 |
1(X0j − Δj) | 1052.06 | 21.73 |
−r(X1j) | 1000 | 20 |
Δj = (X2j − X1j)/2r | 247.93 | 8.26 |
xj = (Xj − X0j)/Δj | x1 = 0.004(X1 − 1300) | x2 = 0.121(X2 − 30) |
Test | X0 | X1 | X2 | X1 X2 | X12 | X22 |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | −1 | −1 | 1 | 1 |
3 | 1 | −1 | 1 | −1 | 1 | 1 |
4 | 1 | −1 | −1 | 1 | 1 | 1 |
5 | 1 | r | 0 | 0 | r2 | 0 |
6 | 1 | −r | 0 | 0 | r2 | 0 |
7 | 1 | 0 | r | 0 | 0 | r2 |
8 | 1 | 0 | −r | 0 | 0 | r2 |
9 | 1 | 0 | 0 | 0 | 0 | 0 |
10 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 | 0 |
Metrics | Source | SS | df | MS | F-Value | Significance |
---|---|---|---|---|---|---|
p | A | 16,521.56 | 2 | 8260.78 | 308.49 | ** |
B | 81.56 | 2 | 40.78 | 1.52 | ||
C | 4769.56 | 2 | 2384.75 | 89.06 | * | |
e | 53.56 | 2 | 26.78 | |||
Sum | 21,426.24 | 8 | 10,713.09 | |||
CVp | A | 0.0280 | 2 | 0.014 | 8.00 | * |
B | 0.5682 | 2 | 0.2841 | 180.38 | ** | |
0.001575 | ||||||
Sum | 0.6025 | 8 | 0.299675 |
No. | 1–3 Seeds per Hole | 2–4 Seeds per Hole | 5–8 Seeds per Hole | ||||||
---|---|---|---|---|---|---|---|---|---|
M | Q | R | M | Q | R | M | Q | R | |
1 | 9.01 | 83.83 | 7.16 | 8.71 | 83.77 | 7.52 | 8.84 | 83.20 | 7.96 |
2 | 7.42 | 79.98 | 12.60 | 7.25 | 81.93 | 10.82 | 7.73 | 80.78 | 11.49 |
3 | 20.14 | 76.44 | 3.42 | 19.76 | 77.04 | 3.2 | 20.81 | 76.28 | 2.91 |
4 | 27.01 | 72.54 | 0.45 | 26.81 | 72.85 | 0.34 | 26.45 | 73.34 | 0.21 |
5 | 7.59 | 82.07 | 10.34 | 8.38 | 82.39 | 9.23 | 7.82 | 82.84 | 9.34 |
6 | 23.35 | 75.97 | 0.68 | 24.12 | 75.31 | 0.57 | 23.33 | 76.31 | 0.36 |
7 | 3.75 | 87.28 | 8.97 | 4.31 | 87.64 | 8.05 | 4.67 | 87.48 | 7.85 |
8 | 3.99 | 87.51 | 8.50 | 4.68 | 85.83 | 9.49 | 4.78 | 88.13 | 7.09 |
9 | 3.59 | 87.02 | 9.39 | 4.19 | 86.45 | 9.36 | 4.38 | 87.41 | 8.21 |
10 | 4.14 | 85.95 | 9.91 | 3.82 | 85.53 | 9.65 | 4.64 | 87.61 | 7.75 |
11 | 3.48 | 86.00 | 10.52 | 3.88 | 85.61 | 10.51 | 4.13 | 87.19 | 8.68 |
12 | 4.35 | 87.51 | 10.14 | 3.65 | 85.28 | 11.07 | 3.71 | 87.09 | 9.20 |
Source | Model | X1 | X2 | X1X2 | X12 | X22 | Residuals | Lack of Fit | Pure Error | Cor Total | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1–3 seeds per hole | M | SS | 805.61 | 357.81 | 17.89 | 6.97 | 201.38 | 33.59 | 2.87 | 2.31 | 0.56 | 808.47 |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 161.12 | 357.81 | 17.89 | 6.97 | 201.38 | 33.59 | 0.47 | 2.31 | 0.11 | |||
F | 337.22 | 748.89 | 37.45 | 14.59 | 421.47 | 70.30 | 20.53 | |||||
signif | ** | ** | ** | * | ** | ** | ** | |||||
Q | SS | 282.66 | 71.21 | 0.0006 | 15.02 | 84.94 | 20.58 | 5.80 | 2.38 | 3.42 | 288.46 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 56.53 | 71.21 | 0.0006 | 15.02 | 84.94 | 20.58 | 0.96 | 2.38 | 0.68 | |||
F | 58.47 | 73.65 | 0.0006 | 15.53 | 87.85 | 21.29 | 3.48 | |||||
signif | ** | ** | * | ** | ** | |||||||
R | SS | 172.44 | 109.78 | 17.68 | 1.53 | 24.75 | 1.58 | 2.28 | 0.0006 | 2.88 | 175.32 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 34.49 | 109.78 | 17.68 | 1.53 | 24.75 | 1.58 | 0.48 | 0.0006 | 0.57 | |||
F | 71.83 | 228.64 | 36.83 | 3.18 | 51.54 | 3.30 | 0.0011 | |||||
signif | ** | ** | ** | ** | ||||||||
2–4 seeds per hole | M | SS | 796.50 | 355.89 | 18.11 | 7.81 | 221.86 | 20.97 | 2.95 | 2.23 | 0.71 | 799.45 |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 159.30 | 355.89 | 18.11 | 7.81 | 221.86 | 20.97 | 0.49 | 2.23 | 0.14 | |||
F | 324.33 | 724.58 | 36.89 | 15.91 | 451.70 | 42.69 | 15.55 | |||||
signif | ** | ** | ** | * | ** | ** | * | |||||
Q | SS | 257.94 | 85.77 | 1.38 | 9.09 | 81.55 | 10.49 | 5.36 | 1.78 | 3.57 | 263.30 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 51.59 | 85.77 | 1.38 | 9.09 | 81.55 | 10.49 | 0.89 | 1.78 | 0.71 | |||
F | 57.79 | 96.08 | 1.55 | 10.18 | 91.35 | 11.75 | 2.49 | |||||
signif | ** | ** | * | ** | * | |||||||
R | SS | 160.50 | 92.23 | 9.49 | 0.048 | 34.39 | 1.80 | 5.44 | 0.0250 | 5.42 | 165.94 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 32.10 | 92.23 | 9.49 | 0.048 | 34.39 | 1.80 | 0.90 | 0.0250 | 1.08 | |||
F | 35.39 | 101.69 | 10.46 | 0.053 | 37.92 | 1.98 | 0.0231 | |||||
signif | ** | ** | * | ** | ||||||||
5–8 seeds per hole | M | SS | 762.73 | 353.05 | 11.39 | 5.13 | 187.82 | 30.89 | 3.52 | 2.70 | 0.82 | 766.25 |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 152.55 | 353.05 | 11.39 | 5.13 | 187.82 | 30.89 | 0.58 | 2.70 | 0.16 | |||
F | 259.88 | 601.45 | 19.41 | 8.74 | 319.98 | 52.62 | 14.40 | |||||
signif | ** | ** | ** | * | ** | ** | ** | |||||
Q | SS | 307.34 | 71.53 | 0.0676 | 7.18 | 93.85 | 27.12 | 2.02 | 1.34 | 0.68 | 309.37 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 61.47 | 71.53 | 0.0676 | 7.18 | 93.85 | 27.12 | 0.33 | 1.34 | 0.13 | |||
F | 182.16 | 211.98 | 0.2003 | 21.29 | 278.12 | 80.38 | 9.88 | |||||
signif | ** | ** | ** | ** | ** | * | ||||||
R | SS | 140.18 | 106.75 | 9.70 | 0.172 | 16.14 | 0.122 | 2.99 | 0.2337 | 2.76 | 143.17 | |
df | 5 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 5 | 11 | ||
MS | 28.04 | 106.75 | 9.70 | 0.172 | 16.14 | 0.122 | 0.49 | 0.2337 | 0.55 | |||
F | 56.22 | 214.08 | 19.46 | 0.345 | 32.36 | 0.245 | 0.4237 | |||||
signif | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, X.; Chen, L.; Chen, D.; He, Y.; Yang, R. Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice. Agriculture 2024, 14, 1934. https://doi.org/10.3390/agriculture14111934
Zha X, Chen L, Chen D, He Y, Yang R. Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice. Agriculture. 2024; 14(11):1934. https://doi.org/10.3390/agriculture14111934
Chicago/Turabian StyleZha, Xiantao, Lin Chen, Dongquan Chen, Yupeng He, and Ranbing Yang. 2024. "Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice" Agriculture 14, no. 11: 1934. https://doi.org/10.3390/agriculture14111934
APA StyleZha, X., Chen, L., Chen, D., He, Y., & Yang, R. (2024). Design and Testing of a Branched Air-Chamber Type Pneumatic Seed Metering Device for Rice. Agriculture, 14(11), 1934. https://doi.org/10.3390/agriculture14111934