Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Factors Affecting the Adoption of Farm Machinery
2.2. Impacts of Adoption of Farm Machinery on Operating Income
2.3. Relationship between Self-Owned Farm Machinery and Outsourced Farm Machinery Services
3. Methods
3.1. First Phase—Multinomial Selection Logit Model
3.2. Second Phase—Estimation of Outcome Equation
3.3. Third Phase—Estimation of ATT and ATU
4. Materials
4.1. Data Sources
4.2. Variable Selection
4.2.1. Dependent Variable
4.2.2. Independent Variables
4.2.3. Control Variables
4.2.4. Instrumental Variable
4.3. Descriptive Statistics
4.4. Mean Difference Test of Variables
5. Results
5.1. Results of Multinomial Logit Selection Model
5.2. Analysis of the Average Treatment Effect
5.3. Robustness Tests
6. Dicussion
6.1. Factors Affecting the Adoption of Farm Machinery
6.2. Impacts of the Adoption of Farm Machinery on Operating Income
7. Conclusions, Policy Implications and Perspectives
7.1. Conclusions
7.2. Policy Implications
7.3. Limitations and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Test | Statistics | Statistics Value | p-Value |
---|---|---|---|
Under-identification test | Kleibergen-Paap rk LM | 360.572 | 0.000 |
Weak instrumental test | Kleibergen-Paap rk Wald F | 571.336 |
Variable | Non-Use | OFM | OMS | Both-Use | ||||
---|---|---|---|---|---|---|---|---|
Coef. | SE | Coef. | SE | Coef. | SE | Coef. | SE | |
Age | −0.000 | 0.009 | −0.015 | 0.009 | −0.016 ** | 0.008 | 0.003 | 0.011 |
Gender | 0.323 * | 0.183 | 0.294 * | 0.176 | 0.261 * | 0.155 | 0.014 | 0.198 |
Education level | −0.054 | 0.088 | −0.056 | 0.076 | 0.059 | 0.056 | 0.076 | 0.063 |
Health | −0.052 | 0.063 | −0.046 | 0.054 | 0.039 | 0.045 | 0.063 | 0.051 |
Internet | 0.309 | 0.197 | 0.069 | 0.155 | −0.270 | 0.167 | −0.190 | 0.167 |
Land scale | −0.007 | 0.007 | 0.001 | 0.001 | −0.007 | 0.010 | 0.001 | 0.004 |
Land renting-in | 0.585 *** | 0.290 | −0.059 | 0.215 | 0.129 | 0.158 | 0.331 *** | 0.167 |
Land renting-out | −0.141 | 0.241 | −0.219 | 0.208 | −0.238 * | 0.137 | −0.008 | 0.176 |
Agricultural labor force | 0.112 | 0.117 | 0.289 *** | 0.081 | 0.177 | 0.118 | 0.133 | 0.141 |
Off-farm employment | 0.127 | 0.082 | −0.122 | 0.087 | −0.102 | 0.077 | −0.102 | 0.117 |
Loan | −0.228 | 0.210 | −0.063 | 0.176 | −0.123 | 0.195 | −0.037 | 0.141 |
Grant | −0.127 | 0.164 | −0.022 | 0.174 | 0.087 | 0.160 | 0.077 | 0.190 |
Cost | 0.273 ** | 0.107 | 0.605 *** | 0.098 | 0.580 *** | 0.165 | 0.500 *** | 0.177 |
Social Network | 0.046 | 0.028 | 0.056 * | 0.033 | 0.032 | 0.020 | 0.061 | 0.039 |
Types | 0.173 * | 0.102 | 0.124 ** | 0.061 | 0.102 | 0.075 | −0.017 | 0.110 |
Topography | −0.178 | 0.237 | 0.431 ** | 0.211 | 0.242 | 0.279 | 0.222 | 0.404 |
Distance | −0.025 | 0.016 | −0.017 | 0.015 | −0.043 ** | 0.021 | −0.023 | 0.020 |
Region | −0.243 * | 0.128 | −0.311 ** | 0.117 | −0.062 | 0.109 | −0.050 | 0.150 |
Constant | 6.420 ** | 1.234 | 2.268 | 1.611 | 4.033 *** | 1.160 | 3.892 * | 2.075 |
Ancillary | ||||||||
8.972 | 6.008 | 3.252 * | 1.800 | 3.002 | 3.972 | 2.111 | 8.353 | |
−0.076 | 0.219 | −0.211 | 0.435 | 0.612 | 0.505 | |||
0.137 | 0.489 | 0.706 | 0.628 | −0.247 | 0.768 | |||
0.781 * | 0.427 | −0.482 | 0.590 | −0.252 | 0.716 | |||
−0.901 ** | 0.326 | 0.124 | 0.436 | −0.382 | 0.257 | |||
Observations | 851 | 875 | 891 | 687 |
References
- Gao, J.; Song, G.; Sun, X. Does labor migration affect rural land transfer? Evidence from China. Land Use Policy 2020, 99, 105096. [Google Scholar] [CrossRef]
- Yu, G.; Lu, Z. Rural credit input, labor transfer and urban–rural income gap: Evidence from China. China Agric. Econ. Rev. 2021, 13, 872–893. [Google Scholar] [CrossRef]
- Qiu, T.; Shi, X.; He, Q.; Luo, B. The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers? China Econ. Rev. 2021, 69, 101680. [Google Scholar] [CrossRef]
- Wang, X.; Herzfeld, T.; Glauben, T. Labor allocation in transition: Evidence from Chinese rural houeholds. China Econ. Rev. 2007, 18, 287–308. [Google Scholar] [CrossRef]
- Qian, L.; Lu, H.; Gao, Q.; Lu, H. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Policy 2022, 115, 106008. [Google Scholar] [CrossRef]
- Qiao, F. Increasing wage, mechanization, and agriculture production in China. China Econ. Rev. 2017, 46, 249–260. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, J. Research on the Impact of Rural Labor Transfer on Agricultural Production in Southwest China. Rural. Econ. 2015, 6, 110–114. [Google Scholar]
- Lin, B.; Wang, Y. How does the natural disasters affect urban-rural income gap? Empirical evidence from China. Energy 2024, 295, 131067. [Google Scholar] [CrossRef]
- Li, X. Farmers’ Income Problems and Government Policies in China, Japan, and South Korea. Financ. Trade Stud. 2005, 5, 32–39. [Google Scholar]
- Schultz, T.W. Transforming Traditional Agriculture; Yale University Press: New Haven, CT, USA, 1964. [Google Scholar]
- Deng, X.; Luo, Y.; Dong, S.; Yang, X. Impact of resources and technology on farm production in northwestern China. Agric. Syst. 2005, 84, 155–169. [Google Scholar] [CrossRef]
- Liao, W.; Zeng, F.; Chanieabate, M. Mechanization of small-scale agriculture in China: Lessons for enhancing smallholder access to agricultural machinery. Sustainability 2022, 14, 7964. [Google Scholar] [CrossRef]
- Liu, J.-C.; Xu, Z.-G.; Zheng, Q.-F.; Hua, L. Is the feminization of labor harmful to agricultural production? The decision-making and production control perspective. J. Integr. Agric. 2019, 18, 1392–1401. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, Z.; Liu, D. Impact of agricultural mechanization on agricultural production, income, and mechanism: Evidence from Hubei province, China. Front. Environ. Sci. 2022, 10, 838686. [Google Scholar] [CrossRef]
- Elagib, N.A.; Khalifa, M.; Rahma, A.E.; Babker, Z.; Gamaledin, S.I. Performance of major mechanized rainfed agricultural production in Sudan: Sorghum vulnerability and resilience to climate since 1970. Agric. For. Meteorol. 2019, 276, 107640. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Meng, M.; Zhang, W.; Zhu, X.; Shi, Q. Agricultural mechanization and rural worker mobility: Evidence from the Agricultural Machinery Purchase Subsidies programme in China. Econ. Model. 2024, 139, 106784. [Google Scholar] [CrossRef]
- Meng, M.; Yu, L.; Yu, X. Machinery structure, machinery subsidies, and agricultural productivity: Evidence from China. Agric. Econ. 2024, 55, 223–246. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Otsuka, K.; Huang, J. Wage growth, landholding, and mechanization in Chinese agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yu, X.; Zhong, F. Machinery investment decision and off-farm employment in rural China. China Econ. Rev. 2012, 23, 71–80. [Google Scholar] [CrossRef]
- Baiyegunhi, L.J.S.; Majokweni, Z.P.; Ferrer, S.R.D. Impact of outsourced ag-ricultural extension program on smallholder farmers’ net farm income in Msinga, KwaZulu-Natal, South Africa. Technol. Soc. 2019, 57, 1–7. [Google Scholar] [CrossRef]
- Mi, Q.; Li, X.; Gao, J. How to improve the welfare of smallholders through agricultural production outsourcing: Evidence from cotton farmers in Xinjiang, Northwest China. J. Clean. Prod. 2020, 256, 120636. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Zhang, Z. A Study on the Utilization Rate and Influencing Factors of Small Agricultural Machinery: Evidence from 10 Hilly and Mountainous Provinces in China. Agriculture 2023, 13, 51. [Google Scholar] [CrossRef]
- Coase, R.H. The Nature of the Firm. In Essential Readings in Economics; Estrin, S., Marin, A., Eds.; Palgrave: London, UK, 1995. [Google Scholar]
- Claude, M.; Shirley, M.M. (Eds.) Handbook of New Institutional Economics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Williamson, O.E. Transaction-cost economics: The governance of contractual relations. J. Law Econ. 1979, 22, 233–261. [Google Scholar] [CrossRef]
- Tufa, A.; Alene, A.; Ngoma, H.; Marenya, P.; Manda, J.; Matin, A.; Thierfelder, C.; Chikoye, D. Willingness to pay for agricultural mechanization services by smallholder farmers in Malawi. Agribusiness 2024, 40, 248–276. [Google Scholar] [CrossRef]
- Qu, M.; Zhao, K.; Zhang, R.; Gao, Y.; Wang, J. Divergence between willingness and behavior of farmers to purchase socialized agricultural services: From a heterogeneity perspective of land scale. Land 2022, 11, 1121. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Boansi, D.; Horlu, G.S.A.; Owusu, V. Adoption and intensity of agricultural mechanization and their impact on non-farm employment of rural women. World Dev. 2024, 173, 106434. [Google Scholar] [CrossRef]
- Qiu, T.; Luo, B. Do small farms prefer agricultural mechanization services? Evidence from wheat production in China. Appl. Econ. 2021, 53, 2962–2973. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef]
- Paudel, G.P.; Kc, D.B.; Rahut, D.B.; Khanal, N.P.; Justice, S.E.; McDonald, A.J. Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. Technol. Soc. 2019, 59, 101196. [Google Scholar] [CrossRef]
- Ngoma, H.; Marenya, P.; Tufa, A.; Alene, A.; Chipindu, L.; Matin, A.; Thierfelder, C.; Chikoye, D. Smallholder farmers’ willingness to pay for two-wheel tractor-based mechanisation services in Zambia and Zimbabwe. J. Int. Dev. 2023, 35, 2107–2128. [Google Scholar] [CrossRef]
- Han, M.; Liu, R.; Ma, H.; Zhong, K.; Wang, J.; Xu, Y. The impact of social capital on farmers’ willingness to adopt new agricultural technologies: Empirical evidence from China. Agriculture 2022, 12, 1368. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What drives smallholders to utilize socialized agricultural services for farmland scale management? Insights from the perspective of collective action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development, 1st ed.; Routledge: London, UK, 2021. [Google Scholar]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research; Routledge: London, UK, 2014; pp. 432–448. [Google Scholar]
- Su, W.; Lu, Y. Adoption mode of agricultural machinery and food productivity: Evidence from China. Front. Sustain. Food Syst. 2024, 7, 1257918. [Google Scholar]
- Arrow, K.J. The economic implications of learning by doing. Rev. Econ. Stud. 1962, 29, 155–173. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization outsourcing clusters and division of labor in Chinese agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liu, Y.; Zhu, P. Agricultural machinery service adoption and farmland transfer-in decision: Evidence from rural China. Front. Environ. Sci. 2023, 11, 1195877. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Smith, A. The Wealth of Nations; Oxford University Press: Oxford, UK, 1776. [Google Scholar]
- Belton, B.; Win, M.T.; Zhang, X.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Policy 2021, 101, 102095. [Google Scholar] [CrossRef]
- Diao, X.; Cossar, F.; Houssou, N.; Kolavalli, S. Mechanization in Ghana: Emerging demand, and the search for alternative supply models. Food Policy 2014, 48, 168–181. [Google Scholar] [CrossRef]
- Yamauchi, F. Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia. Food Policy 2016, 58, 62–69. [Google Scholar] [CrossRef]
- Khonje, M.G.; Manda, J.; Mkandawire, P.; Tufa, A.H.; Alene, A.D. Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agric. Econ. 2018, 49, 599–609. [Google Scholar] [CrossRef]
- Kassie, M.; Marenya, P.; Tessema, Y.; Jaleta, M.; Zeng, D.; Erenstein, O.; Rahut, D. Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia: Evidence from panel data. J. Agric. Econ. 2018, 69, 76–95. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, N.; Kong, F. Does it matter who gives information? The impact of information sources on farmers’ pesticide use in China. J. Asian Econ. 2021, 76, 101345. [Google Scholar] [CrossRef]
- Oparinde, L.O. Fish farmers’ welfare and climate change adaptation strategies in southwest, Nigeria: Application of multinomial endogenous switching regression model. Aquac. Econ. Manag. 2021, 25, 450–471. [Google Scholar] [CrossRef]
- Abdulai, A.N. Impact of conservation agriculture technology on household welfare in Zambia. Agric. Econ. 2016, 47, 729–741. [Google Scholar] [CrossRef]
- Jaleta, M.; Kassie, M.; Tesfaye, K.; Teklewold, T.; Jena, P.R.; Marenya, P.; Erenstein, O. Resource saving and productivity enhancing impacts of crop management innovation packages in Ethiopia. Agric. Econ. 2016, 47, 513–522. [Google Scholar] [CrossRef]
- Deng, T.; Wang, D.; Yang, Y.; Yang, H. Shrinking cities in growing China: Did high speed rail further aggravate urban shrinkage? Cities 2019, 86, 210–219. [Google Scholar] [CrossRef]
- Pan, D.; Lu, Y.; Kong, F. The impact of participation degree and time of returning farmland to forest on farmer’s household income: Empirical analysis based on a multiple endogenous regression model. J. Agrotech. Econ. 2022, 6, 19–32. [Google Scholar]
- Liu, M.; Min, S.; Ma, W.; Liu, T. The adoption and impact of E-commerce in rural China: Application of an endogenous switching regression model. J. Rural Stud. 2021, 83, 106–116. [Google Scholar]
- Suresh, K.; Khanal, U.; Wilson, C.; Managi, S.; Quayle, A.; Santhirakumar, S. An economic analysis of agricultural adaptation to climate change impacts in Sri Lanka: An endogenous switching regression analysis. Land Use Policy 2021, 109, 105601. [Google Scholar] [CrossRef]
- Bourguignon, F.; Fournier, M.; Gurgand, M. Selection bias corrections based on the multinomial logit model: Monte Carlo comparisons. J. Econ. Surv. 2007, 21, 174–205. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior; Academic Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Setsoafia, E.D.; Ma, W.; Renwick, A. Effects of sustainable agricultural practices on farm income and food security in northern Ghana. Agric. Food Econ. 2022, 10, 9. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Vigani, M.; Kathage, J. To risk or not to risk? Risk management and farm productivity. Am. J. Agric. Econ. 2019, 101, 1432–1454. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M. How can African agriculture adapt to climate change? A counterfactual analysis from Ethiopia. Land Econ. 2013, 89, 743–766. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X. Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective? Agriculture 2023, 13, 1927. [Google Scholar] [CrossRef]
- Parvathi, P.; Waibel, H. Organic agriculture and fair trade: A happy marriage? A case study of certified smallholder black pepper farmers in India. World Dev. 2016, 77, 206–220. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhu, Z.; Zhang, H.; Liu, H. Does early disaster exposure affect household agricultural income? Evidence from China. Int. J. Disaster Risk Reduct. 2023, 91, 103702. [Google Scholar] [CrossRef]
- Liu, B.; Fang, Y. The nexus between rural household livelihoods and agricultural functions: Evidence from China. Agriculture 2021, 11, 241. [Google Scholar] [CrossRef]
- Chang, M.; Liu, J.; Shi, H.; Guo, T. The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability 2022, 14, 3385. [Google Scholar] [CrossRef]
- Burke, W.J.; Jayne, T.S.; Sitko, N.J. Do medium-scale farms improve market access conditions for Zambian smallholders? J. Agric. Econ. 2020, 71, 517–533. [Google Scholar] [CrossRef]
- Paudel, G.P.; Kc, D.B.; Rahut, D.B.; Justice, S.E.; McDonald, A.J. Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal. Land Use Policy 2019, 85, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, K.; Batung, E.; Saaka, S.A.; Kansanga, M.M.; Luginaah, I. Determinants of mechanized technology adoption in smallholder agriculture: Implications for agricultural policy. Land Use Policy 2023, 129, 106666. [Google Scholar] [CrossRef]
- Sang, X.; Luo, X.; Razzaq, A.; Huang, Y.; Erfanian, S. Can agricultural mechanization services narrow the income gap in rural China? Heliyon 2023, 9, e13367. [Google Scholar] [CrossRef] [PubMed]
- Abdulai, A.; Huffman, W. The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Econ. 2014, 90, 26–43. [Google Scholar] [CrossRef]
- Jijue, W.; Xiang, J.; Yi, X.; Dai, X.; Tang, C.; Liu, Y. Market Participation and Farmers’ Adoption of Green Control Techniques: Evidence from China. Agriculture 2024, 14, 1138. [Google Scholar] [CrossRef]
- Yang, S.; Li, W. The impact of socialized agricultural machinery services on the labor transfer of maize growers. Agriculture 2023, 13, 1249. [Google Scholar] [CrossRef]
- Xue, P.; Han, X.; Wang, Y.; Wang, X. Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China. Agriculture 2022, 12, 901. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Hu, R.; Zhu, X.; Cai, J. Aging of agricultural labor force and technical efficiency in tea production: Evidence from Meitan County, China. Sustainability 2019, 11, 6246. [Google Scholar] [CrossRef]
- Amankwah, A.; Gwatidzo, T. Food security and poverty reduction effects of agricultural technologies adoption—A multinomial endogenous switching regression application in rural Zimbabwe. Food Policy 2024, 125, 102629. [Google Scholar] [CrossRef]
- Issahaku, G.; Abdulai, A. Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana. Aust. J. Agric. Resour. Econ. 2020, 64, 396–420. [Google Scholar] [CrossRef]
- Nguyen-Van, P.; Poiraud, C.; To-The, N. Modeling farmers’ decisions on tea varieties in Vietnam: A multinomial logit analysis. Agric. Econ. 2017, 48, 291–299. [Google Scholar] [CrossRef]
- Stock, J.H.; Yogo, M. Testing for Weak Instruments in Linear IV Regression. In Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg; Andrews, D.W.K., Stock, J.H., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 80–108. [Google Scholar]
- Liu, E.M. Time to change what to sow: Risk preferences and technology adoption decisions of cotton farmers in China. Rev. Econ. Stat. 2013, 95, 1386–1403. [Google Scholar] [CrossRef]
- Liu, E.M.; Huang, J. Risk preferences and pesticide use by cotton farmers in China. J. Dev. Econ. 2013, 103, 202–215. [Google Scholar] [CrossRef]
- Chavas, D.R.; Izaurralde, R.C.; Thomson, A.M.; Gao, X. Long-term climate change impacts on agricultural productivity in eastern China. Agric. For. Meteorol. 2009, 149, 1118–1128. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Tian, Y.; Tan, M. Structural change of agricultural land use intensity and its regional disparity in China. J. Geogr. Sci. 2009, 19, 545–556. [Google Scholar] [CrossRef]
- Liu, X.; Jin, J.; Wang, G.; Herbert, S. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Johnson, C.M.; Cheein, F.A. Machinery for potato harvesting: A state-of-the-art review. Front. Plant Sci. 2023, 14, 1156734. [Google Scholar] [CrossRef]
- Hu, Q.; Hua, W.; Yin, Y.; Zhang, X.; Liu, L.; Shi, J.; Zhao, Y.; Qin, L.; Chen, C.; Wang, H. Rapeseed research and production in China. Crop J. 2017, 5, 127–135. [Google Scholar] [CrossRef]
- Bouchakour, R.; Saad, M. Farm and farmer characteristics and off-farm work: Evidence from Algeria. Aust. J. Agric. Resour. Econ. 2020, 64, 455–476. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Huang, C.-Y. Too Risky to Focus on Agriculture? An Empirical Study of China’s Agricultural Households’ Off-Farm Employment Decisions. Sustainability 2019, 11, 697. [Google Scholar] [CrossRef]
- Dong, H. Micro-behavioral Choices of Agricultural Mechanization and Their Influencing Factors—An Empirical Analysis Based on Farmers’ Endowment and Cropping Segments. Rural Econ. 2015, 7, 85–90. [Google Scholar]
- Liu, J.; Mao, S.; Zheng, Q.; Xu, Z. Can whole steps of grain production be outsourced? Empirical analysis based on the three provinces of Jiangsu, Jilin, and Sichuan in China. J. Integr. Agric. 2024, 23, 336–347. [Google Scholar] [CrossRef]
- Chayanov, A. The Theory of Peasant Economy; University of Wisconsin Press Agriculture: Madison, WI, USA, 1986. [Google Scholar]
- Huang, P.C. The Theories of “Differential Optimums” and “Vertical Integration” and Their Implications for China. Mod. China 2023, 49, 659–678. [Google Scholar] [CrossRef]
Adoption | Frequency | Percentage (%) | Cumulative Percentage (%) |
---|---|---|---|
Non-use | 851 | 25.76 | 25.76 |
OFM | 875 | 26.48 | 52.24 |
OMS | 891 | 26.97 | 79.21 |
Both-use | 687 | 20.79 | 100.00 |
Total | 3304 | 100.00 |
Variable Type | Variable Name | Variable Definition | Mean | S.D. |
---|---|---|---|---|
Dependent Variable | Operating Income | Market value of crops and other produce cultivated by the family in the past 12 months (RMB, logarithm) | 8.537 | 1.875 |
Independent variables | Self-owned farm machinery | Whether the farm household has self-owned farm machinery (Yes = 1, No = 0) | 0.473 | 0.499 |
Outsourced machinery services | Whether the farm household purchases outsourced machinery services (Yes = 1, No = 0) | 0.478 | 0.500 | |
Individual Characteristics | Age | Age of household head | 53.400 | 11.837 |
Gender | Gender of household head (male = 1; female = 0) | 0.574 | 0.495 | |
Education level | Educational level of household head (illiterate = 1, primary school = 2, junior high school = 3, high school = 4, college and above = 5) | 2.203 | 1.029 | |
Health | Health status of household head (very healthy = 5; healthy = 4; relatively healthy = 3; not very healthy = 2; unhealthy = 1) | 2.787 | 1.284 | |
Internet | Whether to use the internet (Yes = 1; No = 0) | 0.318 | 0.466 | |
Family Characteristics | Land scale | Total land scale of the family in 2012 (mu) | 11.057 | 34.149 |
Land renting-in | Whether there is land renting-in for the household (Yes = 1, No = 0) | 0.160 | 0.367 | |
Land renting-out | Whether there is land renting-out for the household (Yes = 1, No = 0) | 0.115 | 0.319 | |
Agricultural labor force | Agricultural labor inputs | 2.094 | 1.020 | |
Off-farm employment | Number of migrant workers in the family | 0.831 | 0.977 | |
Loan | Whether the family owes money to friends (Yes = 1, No = 0) | 0.169 | 0.375 | |
Grant | Whether the family receives government grants (Yes = 1, No = 0) | 0.710 | 0.454 | |
Cost | Cost of purchasing seeds, pesticides, and fertilizers (RMB, logarithm) | 7.670 | 1.288 | |
Social network | Expenses on gifts to friends (RMB, logarithm) | 7.183 | 2.294 | |
Types | Types of planted crops (Including eight types: Rice, wheat, corn, soybean, peanut, potato, rapeseed and others) | 2.542 | 1.441 | |
Village Characteristics | Topography | The topography of the village (plain = 1, hills = 2 plateau = 3) | 1.782 | 0.792 |
Distance | Distance from the village to the nearest town (km) | 4.318 | 4.298 | |
Regional Characteristics | Region | The western region = 1, the central region = 2, the eastern region = 3 | 2.015 | 0.863 |
Instrumental variable | Proportion | Proportion of agricultural machinery adopted in the same village except for the household | 0.739 | 0.246 |
Variable Name | Non-Use | OFM | OMS | Both-Use |
---|---|---|---|---|
Operating Income | 7.857 | 8.823 *** | 8.409 *** | 9.179 *** |
Age | 54.395 | 51.090 *** | 55.418 * | 52.492 *** |
Gender | 0.545 | 0.633 *** | 0.517 | 0.606 ** |
Education level | 2.074 | 2.145 | 2.213 *** | 2.422 *** |
Health | 2.841 | 2.783 | 2.675 *** | 2.869 |
Internet | 0.251 | 0.368 *** | 0.292 * | 0.371 *** |
Land scale | 8.885 | 16.254 *** | 7.901 | 11.223 ** |
Land renting-in | 0.081 | 0.193 *** | 0.147 *** | 0.233 *** |
Land renting-out | 0.130 | 0.096 ** | 0.130 | 0.102 * |
Agricultural labor force | 1.947 | 2.358 *** | 1.934 | 2.146 *** |
Off-farm employment | 0.743 | 0.749 | 0.914 *** | 0.936 *** |
Loan | 0.152 | 0.185 * | 0.165 | 0.175 |
Grant | 0.624 | 0.714 *** | 0.735 *** | 0.779 *** |
Cost | 7.141 | 7.936 *** | 7.586 *** | 8.098 *** |
Social network | 6.730 | 7.360 *** | 7.238 *** | 7.450 *** |
Types | 2.465 | 2.937 *** | 2.336 * | 2.402 |
Topography | 1.984 | 2.163 *** | 1.473 *** | 1.447 *** |
Distance | 4.773 | 5.104 | 3.699 *** | 3.556 *** |
Region | 2.069 | 1.709 *** | 2.203 *** | 2.092 |
Proportion | 0.567 | 0.724 *** | 0.810 *** | 0.878 *** |
Number of observations | 851 | 875 | 891 | 687 |
Variable | OFM | OMS | Both-Use | |||
---|---|---|---|---|---|---|
Coef. | Marginal Effect | Coef. |
Marginal Effect | Coef. |
Marginal Effect | |
Age | −0.001 | −0.001 ** | 0.020 *** | 0.003 *** | 0.005 | −0.001 |
(0.005) | (0.001) | (0.006) | (0.001) | (0.006) | (0.001) | |
Gender | 0.252 ** | 0.031 ** | −0.047 | −0.039 ** | 0.265 ** | 0.029 ** |
(0.114) | (0.015) | (0.114) | (0.015) | (0.129) | (0.014 | |
Education level | 0.002 | −0.013 * | 0.092 | 0.003 | 0.189 *** | 0.020 *** |
(0.058) | (0.008) | (0.058) | (0.008) | (0.064) | (0.006) | |
Health | −0.049 | −0.001 | −0.099 ** | −0.012 ** | −0.040 | 0.003 |
(0.042) | (0.006) | (0.043) | (0.006) | (0.048) | (0.005) | |
Internet | 0.445 *** | 0.040 | 0.309 ** | 0.006 ** | 0.365 ** | 0.010 |
(0.138) | (0.018) | (0.143) | (0.018) | (0.155) | (0.016) | |
Land scale | 0.003 * | 0.001 ** | −0.007 | −0.002 ** | 0.004 * | 0.001 *** |
(0.002) | (0.000) | (0.005) | (0.001) | (0.002) | (0.000) | |
Land renting-in | 0.577 *** | 0.017 | 0.635 *** | 0.018 | 0.943 *** | 0.063 *** |
(0.169) | (0.020) | (0.176) | (0.021) | (0.182) | (0.017) | |
Land renting-out | −0.156 | −0.013 | −0.087 | 0.004 | −0.162 | −0.010 |
(0.173) | (0.023) | (0.164) | (0.023) | (0.192) | (0.021) | |
Agricultural labor force | 0.259 *** | 0.040 *** | −0.037 | −0.027 *** | 0.104 | 0.005 |
(0.053) | (0.007) | (0.061) | (0.008) | (0.065) | (0.007) | |
Off-farm employment | −0.044 | −0.027 *** | 0.210 *** | 0.026 *** | 0.193 *** | 0.015 ** |
(0.058) | (0.008) | (0.057) | (0.007) | (0.064) | (0.007) | |
Loan | −0.056 | −0.008 | 0.006 | 0.006 | −0.032 | −0.002 |
(0.146) | (0.019) | (0.150) | (0.020) | (0.165) | (0.018) | |
Grant | 0.072 | −0.018 | 0.315 *** | 0.032 * | 0.294 ** | 0.017 |
(0.117) | (0.016) | (0.119) | (0.017) | (0.137) | (0.016) | |
Cost | 0.387 *** | 0.043 *** | 0.056 | −0.034 *** | 0.354 *** | 0.028 *** |
(0.049) | (0.007) | (0.046) | (0.007) | (0.056) | (0.006) | |
Social Network | 0.061 *** | 0.001 | 0.090 *** | 0.006 * | 0.092 *** | 0.004 |
(0.023) | (0.003) | (0.024) | (0.004) | (0.028) | (0.003) | |
Types | 0.218 *** | 0.030 *** | 0.031 | −0.011 ** | 0.075 | −0.002 |
(0.037) | (0.005) | (0.040) | (0.007) | (0.046) | (0.005) | |
Topography | 0.284 *** | 0.010 *** | −0.574 *** | −0.083 *** | −0.477 *** | −0.042 *** |
(0.079) | (0.010) | (0.083) | (0.012) | (0.095) | (0.011) | |
Distance | 0.002 | 0.003 * | −0.017 | −0.001 | −0.034 ** | −0.004 * |
(0.012) | (0.002) | (0.014) | (0.002) | (0.016) | (0.002) | |
Region | −0.134 * | −0.035 *** | 0.150 ** | 0.025 *** | 0.116 | 0.012 |
(0.071) | (0.010) | (0.072) | (0.010) | (0.081) | (0.009) | |
Proportion | 2.292 *** | 3.742 *** | 6.118 *** | |||
(0.228) | (0.251) | (0.362) | ||||
Constant | −6.503 *** | −4.344 *** | −9.265 *** | |||
(0.686) | (0.687) | (0.841) | ||||
Wald test: χ2(57) | 1155.52 *** | |||||
Sign. of instrument | 380.46 *** | |||||
Number of observations | 3304 |
Variable | Actual Selection | Counterfactual Selection | Actual Income (1) | Counterfactual Income (2) | ATT | Change (%) |
---|---|---|---|---|---|---|
Operating income | OFM | Non-use | 9230.364 (316.835) | 7856.208 (333.455) | 1374.156 *** (282.337) | 17.491% |
OMS | 5644.804 (140.283) | 5541.018 (211.292) | 103.786 (156.909) | 1.873% | ||
Both-use | 12,815.696 (467.332) | 9821.862 (495.780) | 2993.834 *** (442.500) | 30.481% |
Variable | Actual Selection | Counterfactual Selection | Actual Income (1) | Counterfactual Income (2) | ATT | Change (%) |
---|---|---|---|---|---|---|
Operating income | Non-use | OFM | 3709.081 (132.996) | 5331.927 (237.524) | 1622.846 *** (181.867) | 43.753% |
OMS | 4706.465 (165.034) | 997.384 *** (106.922) | 21.192% | |||
Both-use | 6302.024 (290.513) | 2592.943 *** (213.099) | 69.908% |
Variable | Actual Selection | Counterfactual Selection | Actual Income (1) | Counterfactual Income (2) | ATT
|
Change (%) |
---|---|---|---|---|---|---|
Operating income | OFM | OMS | 9230.364 (316.835) | 7834.431 (291.826) | 1395.932 *** (210.218) | 17.818% |
Both-use | 13,147.460 (562.494) | −3917.092 *** (348.464) | −29.794% | |||
OMS | OFM | 5644.804 (140.283) | 5242.463 (118.224) | 402.341 *** (76.256) | 7.675% | |
Both-use | 8107.128 (234.574) | −2462.323 *** (126.451) | −30.372% | |||
Both-use | OFM | 12,815.696 (467.332) | 7702.333 (248.820) | 5113.363 *** (286.021) | 66.387% | |
OMS | 8410.071 (249.934) | 4405.625 *** (278.754) | 52.385% |
Variable | Actual Selection | Counterfactual Selection | Actual Income (1) | Counterfactual Income (2) | ATT (%) |
Change (%) |
---|---|---|---|---|---|---|
Operating income | OFM | Non-use | 8951.523 (290.948) | 7759.388 (325.778) | 1192.135 *** (271.916) | 13.318% |
OMS | 5634.825 (140.105) | 5510.340 (208.618) | 124.485 (154.699) | 2.209% | ||
Both-use | 12,410.235 (423.580) | 9735.241 (486.847) | 2674.994 *** (409.748) | 21.555% |
Variable | Actual Selection | Counterfactual Selection | Actual per Capita Income (1) | Counterfactual per Capita Income (2) | ATT |
Change (%) |
---|---|---|---|---|---|---|
Per capita Operating income | OFM | Non-use | 2251.028 (64.035) | 1870.692 (72.147) | 380.336 *** (55.002) | 20.331% |
OMS | 1573.406 (36.337) | 1389.730 (40.014) | 183.676 *** (31.479) | 13.217% | ||
Both-use | 3276.248 (116.424) | 2241.397 (82.162) | 1034.851 *** (94.860) | 46.170% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhou, Z.; Zhou, L.; Liu, C. Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income. Agriculture 2024, 14, 1936. https://doi.org/10.3390/agriculture14111936
Hu Y, Zhou Z, Zhou L, Liu C. Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income. Agriculture. 2024; 14(11):1936. https://doi.org/10.3390/agriculture14111936
Chicago/Turabian StyleHu, Yuan, Ziyang Zhou, Li Zhou, and Caiming Liu. 2024. "Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income" Agriculture 14, no. 11: 1936. https://doi.org/10.3390/agriculture14111936
APA StyleHu, Y., Zhou, Z., Zhou, L., & Liu, C. (2024). Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income. Agriculture, 14(11), 1936. https://doi.org/10.3390/agriculture14111936