Effect of Conservation Management on Oxisol in a Sugarcane Area Under a Pre-Sprouted Seedling System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Area History
2.2. Characterization
2.3. Experimental Design and Treatments
2.4. Soil Collection to Determine Soil Physical Attributes
2.5. Stalk Yield
2.6. Proctor Test
2.7. Dry Root Biomass
2.8. Statistical Analysis
3. Results
3.1. Soil Physical Attributes
3.2. Root System
3.3. Stalk Yield
4. Discussion
4.1. Effects of Tillage on Soil Physical Attributes
4.2. Effects of Tillage on Dry Root Biomass
4.3. Relationship of Physical Attributes and Dry Root Biomass with Stalk Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordonal, R.d.O.; Carvalho, J.L.N.; Lal, R.; De Figueiredo, E.B.; Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 1–23. [Google Scholar] [CrossRef]
- CONAB. Acompanhamento da Safra Brasileira: Cana-de-Açúcar, 7th ed.; Conab: Brasília, Brazil, 2020; 62p. [Google Scholar]
- Esteban, D.A.A.; Souza, Z.M.; Tormena, C.S.; Lovera, L.H.; Lima, E.S.; Oliveira, I.N.; Ribeiro, N.P. Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil Tillage Res. 2019, 187, 60–71. [Google Scholar] [CrossRef]
- Guimarães Júnnyor, W.S.; Diserens, E.; De Maria, I.C.; Araujo-Junior, C.F.; Farhate, C.V.V.; Souza, Z.M. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Sci. Total Environ. 2019, 681, 424–434. [Google Scholar] [CrossRef]
- Esteban, D.A.A.; Souza, Z.M.; Da Silva, R.B.; Lima, E.S.; Lovera, L.H.; Oliveira, I.N. Impact of permanent traffic lanes on the soil physical and mechanical properties in mechanized sugarcane fields with the use of automatic steering. Geoderma 2020, 362, 114097. [Google Scholar] [CrossRef]
- Oliveira, I.N.; Souza, Z.M.; Lovera, L.H.; Farhate, C.V.V.; Lima, E.S.; Esteban, D.A.A.; Fracarolli, J.A. Least limiting water range as influenced by tillage and cover crop. Agric. Water Manag. 2019, 225, 105777. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Souza, Z.M.; Franco, H.C.J.; Otto, R.; Rossi Neto, J.; Garside, A.L.; Carvalho, J.L.N. Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geodermal Reg. 2018, 13, 15–25. [Google Scholar] [CrossRef]
- Arcoverde, N.S.; Soares, M.C.; de Souza, A.; Nagahama, H.D.J. Growth and sugarcane cultivars productivity under notillage and reduced tillage system. Cerne 2019, 66, 168–177. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Magalhães, P.S.G.; Bordonal, R.O.; Cherubin, M.R.; Castioni, G.A.F.; Tenelli, S.; Franco, H.C.J.; Carvalho, J.L.N. Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil Tillage Res. 2019, 195, 104383. [Google Scholar] [CrossRef]
- Lisboa, I.P.; Cherubin, M.R.; Lima, R.P.; Cerri, C.C.; Satiro, L.S.; Wienhold, B.J.; Schmer, M.R.; Jin, V.L.; Cerri, C.E.P. Sugarcane straw removal effects on plant growth and stalk yield. Ind. Crops Prod. 2018, 111, 794–806. [Google Scholar] [CrossRef]
- Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; Silva, V.R.; Luz, F.B. Age-hardening phenomena in an oxisol from the subtropical region of Brazil. Soil Tillage Res. 2017, 170, 27–37. [Google Scholar] [CrossRef]
- Balkcom, K.S.; Arriaga, F.J.; Balkcom, K.B.; Boykin, D.L. Single- and twin-row peanut production within narrow and wide strip tillage systems. Agron. J. 2010, 102, 507–512. [Google Scholar] [CrossRef]
- Noronha, R.H.F. Planting of Pre-Sprouted Seedlings (MPB) of Sugarcane in Soil Conservation Management Systems. (Teses in Crop Production). Ph.D. Thesis, Faculdade de Agronomia, UNESP, Jaboticabal, Brazil, 2018; 77p. Available online: http://hdl.handle.net/11449/152713 (accessed on 27 August 2024).
- Sandhu, H.S.; Singh, M.P.; Vuyyuru, M. Minimum or no-tillage improves sugarcane ratoon yield on florida histosol. Agron. J. 2019, 111, 1516–1523. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.D.; Jacomine, P.K.T.; Anjos, L.H.C.D.; Oliveira, V.A.D.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.D.; Araujo Filho, J.C.D.; Oliveira, J.B.D.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; EMBRAPA Solos: Brasília, Brazil, 2018. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014; 372p. [Google Scholar]
- Lovera, L.H.; De Souza, Z.M.; Esteban, D.A.A.; De Oliveira, I.N.; Farhate, C.V.V.; Lima, E.d.S.; Panosso, A.R. Sugarcane root system: Variation over three cycles under different soil tillage systems and cover crops. Soil Tillage Res. 2021, 208, 104866. [Google Scholar] [CrossRef]
- Norrish, K.; Taylor, R.M. The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci. 1961, 12, 1–13. [Google Scholar] [CrossRef]
- Kämpf, N.; Schwertmann, U. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 1983, 29, 27–39. [Google Scholar] [CrossRef]
- Ferreira, M.M.; Fernandes, B.; Curi, N. Influência da mineralogia da fração argila nas propriedades físicas de Latossolos da região Sudeste do Brasil. Rev. Bras. Ciência Solo 1999, 23, 515–524. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; Embrapa: Brasília, Brazil, 2017; 573p. [Google Scholar]
- Associação Brasileira de Normas Técnicas—ABNT NBR 7182:2016.1988. Solo—Ensaio de compactação, que Revisa a Norma ABNT NBR 7182:1986 Versão Corrigida: 1988, Elaborada pela Comissão de Estudo Especial de Solos (ABNT/CEE-221). Available online: https://www.normas.com.br/visualizar/abnt-nbr-nm/1969/abnt-nbr7182-solo-ensaio-de-compactacao (accessed on 12 July 2024).
- Carter, M.R. Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Can. J. Soil Sci. 1990, 70, 425–433. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Håkansson, I. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Dos Santos, G.A.; Dias Junior, M.d.S.; Guimarães, P.T.G.; Furtini Neto, A.E. Diferentes graus de compactação e fornecimento de fósforo influenciando no crescimento de plantas de milho (Zea mays L.) cultivadas em solos distintos. Cienc. Agrotecnol. 2005, 4, 740–752. [Google Scholar] [CrossRef]
- Otto, R.; Silva, A.P.; Franco, H.C.J.; Oliveira, E.C.A.; Trivelin, P.C.O. High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res. 2011, 117, 201–210. [Google Scholar] [CrossRef]
- Vasconcelos, A.C.M.; Casagrande, A.A.; Perecin, D.; Jorge, L.A.C.; Landell, M.G.A. Avaliação do sistema radicular da cana-de-açúcar por diferentes métodos. Rev. Bras. Ciência Solo 2003, 27, 849–858. [Google Scholar] [CrossRef]
- Faroni, C.E.; Trivelin, P.C.O. Quantificação de raízes metabolicamente ativas de cana-de-açúcar. Pesqui. Agropecu. Bras. 2006, 41, 1007–1013. [Google Scholar] [CrossRef]
- Freddi, O.S.; Centurion, J.F.; Beutler, A.N.; Aratani, R.G.; Leonel, C.L. Compactação do solo no crescimento radicular e produtividade da cultura do milho. Rev. Bras. Ciência Solo 2007, 31, 627–636. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2014, 67, 1–50. [Google Scholar]
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Soft. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Awe, G.O.G.; Fontanela, E.; Reichert, J.M. Degree of compaction, aeration, and soil water retention indices of a sugarcane field without soil disturbance after initial tillage. Can. J. Soil Sci. 2023, 104, 91–107. [Google Scholar] [CrossRef]
- Marasca, I.; Lemos, S.V.; Silva, R.B.; Guerra, S.P.S.; Lanças, K.P. Soil compaction curve of an oxisol under sugarcane planted after in-row deep tillage. Rev. Bras. Ciência Solo 2015, 39, 1490–1497. [Google Scholar] [CrossRef]
- Vischi Filho, O.J.; Souza, Z.M.; Silva, R.B.; Lima, C.C.; Pereira, D.D.M.G.; Lima, M.E.; Sousa, A.C.M.; Souza, G.S. Capacidade de suporte de carga de Latossolo Vermelho cultivado com cana de açúcar e efeitos da mecanização no solo. Pesqui. Agropecu. Bras. 2015, 50, 322–332. [Google Scholar] [CrossRef]
- Silva, R.B.; Iori, P.; Souza, Z.M.; Pereira, D.M.G.; Vischi Filho, O.J.; Silva, F.A.M. Contact pressures and the impact of farm equipment on Latosol with the presence and absence of sugarcane straw. Cienc. Agrotecnol. 2016, 40, 265–278. [Google Scholar] [CrossRef]
- Ferreras, L.A.; Costa, J.L.; Garcia, F.O.; Pecorari, C. Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern “Pampa” of Argentina. Soil Tillage Res. 2000, 54, 31–39. [Google Scholar] [CrossRef]
- Toledo, M.P.S.; Rolim, M.M.; De Lima, R.P.; Cavalcanti, R.Q.; Ortiz, P.F.S.; Cherubin, M.R. Strength, swelling and compressibility of unsaturated sugarcane soils. Soil Tillage Res. 2021, 212, 105072. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; De Lima, R.P.; Tavares, U.E.; Pedrosa, E.M.R.; Gomes, I.F. Soil physical and mechanical attributes in response to successive harvests under sugarcane cultivation in Northeastern Brazil. Soil Tillage Res. 2019, 189, 140–147. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Martíni, A.F.; Valani, G.P.; da Silva, L.F.S.; Bolonhezi, D.; Di Prima, S.; Cooper, M. Long-Term Trial of Tillage Systems for Sugarcane: Effect on Topsoil Hydrophysical Attributes. Sustainability 2021, 13, 3448. [Google Scholar] [CrossRef]
- Martíni, A.F.; Valani, G.P.; da Silva, L.F.S.; de Paula, S.; Bolonhezi, D.; Cooper, M. Soil physical quality response to management systems in a long-term sugarcane trial. Land Degrad Dev. 2024, 35, 1320–1334. [Google Scholar] [CrossRef]
- Sharma, D.K.; Tomar, S.; Chakraborty, D. Role of earthworm in improving soil structure and functioning. Curr. Sci. 2017, 113, 1064–1071. [Google Scholar] [CrossRef]
- Moraes, M.T.; Luz, F.B.; Debiase, H.; Franchini, J.C.; Silva, V.R. Soil load support capacity increases with time without soil mobilization as a result of age-hardening phenomenon. Soil Tillage Res. 2019, 186, 128–134. [Google Scholar] [CrossRef]
- Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Corrêa, S.T.; Kolln, O.T.; Gava, G.J.C.; Santos, L.N.S.; Victoria, R.L. Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. J. Cleaner Prod. 2016, 112, 4576–4584. [Google Scholar] [CrossRef]
- Landell, M.G.A.; Campana, M.P.; Figueiredo, P.; Xavier, M.A.; Anjos, I.A.; Dinardo Miranda, L.L.; Scarpare, M.S.; Garcia, J.C.; Bidóia, M.A.P.; Silva, D.N.; et al. Sistema de Multiplicação de Cana-de-Açúcar com uso de Mudas Pre Brotadas (MPB), Oriundas de Gemas Individualizadas; Instituto Agronômico de Campinas: Ribeirão Preto, Brazil, 2012; 55p. [Google Scholar]
Depth | Bd | DC | MiP | MaP | TP | TS | Clay | Silt | |
---|---|---|---|---|---|---|---|---|---|
(m) | (Mg m−3) | (%) | ------ (m3 m−3) ----- | ---------- (g kg−1) -------- | |||||
0.00–0.05 | 1.29 | 88 | 0.35 | 0.09 | 0.44 | 218 | 503 | 278 | |
0.05–0.10 | 1.25 | 85 | 0.34 | 0.12 | 0.46 | 219 | 533 | 247 | |
0.10–0.20 | 1.18 | 81 | 0.34 | 0.17 | 0.51 | 217 | 535 | 247 | |
0.20–0.40 | 1.27 | 87 | 0.33 | 0.15 | 0.48 | 210 | 545 | 244 | |
0.40–0.60 | 1.28 | 88 | 0.34 | 0.13 | 0.48 | 216 | 523 | 261 | |
Depth | Fe2O3 | Fed | Feo | Kt | Gb | Gt | Hm | Gb/(Gb + Kt) | Kt/(Kt + Gb) |
(m) | g kg−1 | ||||||||
0.00–0.05 | 138 | 69 | 3 | 356 | 644 | 45 | 54.3 | 64.4 | 0.26 |
0.05–0.10 | 171.7 | 70.7 | 2.9 | 360 | 640 | 47.3 | 54.3 | 64 | 0.26 |
0.10–0.20 | 163.3 | 68.3 | 3.4 | 357.3 | 642.7 | 44.3 | 53 | 64.27 | 0.26 |
0.20–0.40 | 134 | 69.3 | 3.3 | 358.3 | 641.7 | 50.7 | 48.7 | 64.17 | 0.26 |
0.40–0.60 | 134 | 66.7 | 3.7 | 322.3 | 677.7 | 38.7 | 55.3 | 67.77 | 0.23 |
Microporosity (m3 m−3) | Macroporosity (m3 m−3) | Total Porosity (m3 m−3) | Tillage | ||||||
---|---|---|---|---|---|---|---|---|---|
July/19 | July/18 | April/18 | July/19 | July/18 | April/18 | July/19 | July/18 | April/18 | |
0.41 Ab | 0.39 Bb | 0.55 Aa | 0.07 Aa | 0.08 Aa | 0.07 Aa | 0.48 Ab | 0.47 Bb | 0.62 Aa | CT |
0.41 Ac | 0.44 Ab | 0.53 Aa | 0.08 Aa | 0.08 Aa | 0.08 Aa | 0.48 Ab | 0.51 Ab | 0.60 Aa | NT |
0.41 Ab | 0.43 Ab | 0.52 Aa | 0.11 Aa | 0.08 Aa | 0.07 Aa | 0.53 Ab | 0.51 ABb | 0.60 Aa | MT |
0.40 Ab | 0.42 ABb | 0.52 Aa | 0.09 Aa | 0.08 Aa | 0.08 Aa | 0.50 Ac | 0.54 Ab | 0.60 Aa | CTS |
0.38 Ab | 0.39 Bb | 0.54 Aa | 0.08 Aab | 0.10 Aa | 0.05 Ab | 0.46 Ab | 0.49 Ab | 0.59 Aa | CT |
0.37 Ac | 0.43 Ab | 0.52 Aa | 0.07 Aa | 0.07 Aa | 0.05 Aa | 0.44 Ac | 0.50 Ab | 0.57 Aa | NT |
0.38 Ac | 0.42 ABb | 0.51 Aa | 0.10 Aa | 0.07 Aab | 0.05 Ab | 0.48 Ab | 0.49 Ab | 0.56 Aa | MT |
0.38 Ab | 0.39 Bb | 0.54 Aa | 0.08 Aab | 0.11 Aa | 0.06 Ab | 0.46 Ab | 0.5 Ab | 0.60 Aa | CTS |
0.36 ABb | 0.39 ABb | 0.52 Aa | 0.07 Ab | 0.09 ABa | 0.05 Ab | 0.44 Bc | 0.49 Ab | 0.57 Aa | CT |
0.38 ABc | 0.41 ABb | 0.5 Aa | 0.08 Aa | 0.06 Ba | 0.05 Ab | 0.46 Abb | 0.47 Ab | 0.56 Aa | NT |
0.38 Ac | 0.41 ABb | 0.51 Aa | 0.09 Aa | 0.08 ABa | 0.05 Ab | 0.47 Aa | 0.50 Ab | 0.56 Aa | MT |
0.36 Bc | 0.38 Bb | 0.52 Aa | 0.07 Aab | 0.10 Aa | 0.06 Ab | 0.43 Bc | 0.48 Ab | 0.58 Aa | CTS |
0.37 Ab | 0.38 Bb | 0.52 Aa | 0.09 Aa | 0.07 Aa | 0.06 Aa | 0.46 Ab | 0.45 Bb | 0.58 Aa | CT |
0.37 Ac | 0.41 Ab | 0.50 Aa | 0.08 Aa | 0.06 Aa | 0.07 Aa | 0.45 Ab | 0.48 ABb | 0.57 Aa | NT |
0.37 Ac | 0.41 Ab | 0.51 Aa | 0.10 Aa | 0.09 Aa | 0.06 Aa | 0.47 Ab | 0.51 Ab | 0.58 Aa | MT |
0.36 Ab | 0.38 Bb | 0.52 Aa | 0.08 Aab | 0.09 Aa | 0.05 Ab | 0.45 Ac | 0.48 Bb | 0.57 Aa | CTS |
Limiting DC | R2 | b | a | Layer (m) |
---|---|---|---|---|
74% | 0.24 * | 0.85 | −1.14 | 0.0–0.05 |
77% | 0.17 * | 0.86 | –0.88 | 0.05–0.10 |
78% | 0.18 * | 0.86 | –0.76 | 0.10–0.20 |
78% | 0.25 * | 0.84 | –0.61 | 0.20–0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, I.N.d.; Souza, Z.M.d.; Bolonhezi, D.; Tavares, R.L.M.; Lima, R.P.d.; Silva, R.B.d.; Araújo, F.S.; Lovera, L.H.; Lima, E.d.S. Effect of Conservation Management on Oxisol in a Sugarcane Area Under a Pre-Sprouted Seedling System. Agriculture 2024, 14, 1965. https://doi.org/10.3390/agriculture14111965
Oliveira INd, Souza ZMd, Bolonhezi D, Tavares RLM, Lima RPd, Silva RBd, Araújo FS, Lovera LH, Lima EdS. Effect of Conservation Management on Oxisol in a Sugarcane Area Under a Pre-Sprouted Seedling System. Agriculture. 2024; 14(11):1965. https://doi.org/10.3390/agriculture14111965
Chicago/Turabian StyleOliveira, Ingrid Nehmi de, Zigomar Menezes de Souza, Denizart Bolonhezi, Rose Luiza Moraes Tavares, Renato Paiva de Lima, Reginaldo Barboza da Silva, Fernando Silva Araújo, Lenon Henrique Lovera, and Elizeu de Souza Lima. 2024. "Effect of Conservation Management on Oxisol in a Sugarcane Area Under a Pre-Sprouted Seedling System" Agriculture 14, no. 11: 1965. https://doi.org/10.3390/agriculture14111965
APA StyleOliveira, I. N. d., Souza, Z. M. d., Bolonhezi, D., Tavares, R. L. M., Lima, R. P. d., Silva, R. B. d., Araújo, F. S., Lovera, L. H., & Lima, E. d. S. (2024). Effect of Conservation Management on Oxisol in a Sugarcane Area Under a Pre-Sprouted Seedling System. Agriculture, 14(11), 1965. https://doi.org/10.3390/agriculture14111965