Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tractor Overturning and Rollover Theory
2.1.1. Lateral Overturning on Slope Under Stationary Condition
2.1.2. Lateral Overturning During Constant-Speed Turning
2.1.3. Backward Rollover While Driving on Slope
2.1.4. Analysis of Factors That Affect Lateral Overturning and Backward Rollover of Wheeled and Tracked Tractors
2.2. Miniature Tracked Forestry Tractor
Mass Center Derivation
2.3. Three-Dimensional (3D) Simulation Model
2.3.1. Three-Dimensional Model Construction
2.3.2. Verification of Simulation Model
Static Sidelong Falling Angle
Minimum Turning Radius
3. Results and Discussions
3.1. Mass Center Derivation Results for Miniature Tracked Forestry Tractor
3.2. 3D Modeling Results for Miniature Tracked Forestry Tractor
3.3. Simulation Model Verification Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, Y.S.; Youn, K.W.; Kim, K.S.; Choi, D.P.; Hong, S.J.; Lee, M.J. Characteristics and prevention measures of traffic accidents causing injuries to agricultural machinery occupants in the Jeonnam region. JKDAS 2023, 25, 1577–1595. [Google Scholar] [CrossRef]
- Koh, J.W.; Kwon, S.C.; Kim, K.R.; Lee, K.S.; Jang, E.C.; Kwon, Y.J.; Ryu, S.H.; Lee, S.J.; Song, J.C. A study on the development of surveillance system for agricultural injuries in Korea. J. Agric. Med. Community Health 2007, 32, 139–153. [Google Scholar] [CrossRef]
- Sohn, J.R.; Park, J.H.; Kim, S.P.; Kim, S.J.; Cho, S.H.; Cho, N.S. Analysis of risk factors influencing the severity of agricultural machinery related injuries. JKSEM 2007, 18, 300–306. [Google Scholar]
- Kim, S.J.; Gim, D.H.; Jang, M.K.; Hwang, S.J.; Yang, Y.J.; Nam, J.S. Development of regression model for predicting the maximum static friction force of tractors with a front-end loader. J. Biosyst. Eng. 2023, 48, 329–338. [Google Scholar] [CrossRef]
- Jeong, C.W.; Kim, D.J. A Study on the disaster analysis and accident prevention measures for agricultural work. Korean J. Hazard. Mater. 2023, 11, 50–57. [Google Scholar] [CrossRef]
- Togaev, A.; Shermukhamedov, A. Tractor rollover accidents: A review of factors and safety measures. E3S Web Conf. 2023, 449, 09011. [Google Scholar] [CrossRef]
- Facchinetti, D.; Santoro, S.; Galli, L.E.; Pessina, D. Agricultural tractor roll-over related fatalities in Italy: Results from a 12 years analysis. Sustainability 2021, 13, 4536. [Google Scholar] [CrossRef]
- Previati, G.; Gobbi, M.; Mastinu, G. Mathematical models for farm tractor rollover prediction. J. Veh. Design. 2014, 64, 280–303. [Google Scholar] [CrossRef]
- Franceschetti, B.; Rondelli, V.; Ciuffoli, A. Comparing the influence of roll-over protective structure type on tractor lateral stability. Saf. Sci. 2019, 115, 42–50. [Google Scholar] [CrossRef]
- Lee, D.G.; Yoo, H.J.; Shin, M.J.; Oh, J.S.; Shim, S.B. Analysis of overturning stability of small off-road vehicle. J. Biosyst. Eng. 2023, 48, 309–318. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, S.D.; Kim, Y.J.; Kim, Y.J.; Choi, C.H. Effect of tractor travelling speed on a tire slip. KJOAS 2018, 45, 120–127. [Google Scholar] [CrossRef]
- Shim, S.B.; Park, Y.J.; Kim, K.U.; Kim, J.W.; Park, M.S.; Song, T.Y. Computer simulation of sideways overturning of side-loaded mini forwarder. J. Biosyst. Eng. 2007, 32, 69–76. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, J.H.; Kim, Y.S.; Woo, S.M.; Daniel, D.U.; Ha, Y.S. A simulation study on the dynamics characteristics of hot pepper harvester. J. Korean Soc. Simul. 2020, 29, 19–25. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Islam, M.N.; Ali, M.; Kiraga, S.; Kim, Y.J.; Chung, S.O. Theoretical overturning analysis of a 2.6-kW two-row walking-type automatic pepper transplanter. J. Biosyst. Eng. 2022, 47, 79–91. [Google Scholar] [CrossRef]
- Park, H.K.; Kim, K.U.; Kim, J.W.; Song, T.Y.; Park, M.S.; Cho, K.H. Sideways overturning analysis of forwarder using a multibody dynamics analysis program. J. Biosyst. Eng. 2002, 27, 185–194. [Google Scholar] [CrossRef]
- Qin, J.; Zhu, Z.; Ji, H.; Zhu, Z.; Li, Z.; Du, Y.; Song, Z.; Mao, E. Simulation of active steering control for the prevention of tractor dynamic rollover on random road surfaces. Biosyst. Eng. 2019, 185, 135–149. [Google Scholar] [CrossRef]
- Eom, B.G.; Kang, B.B.; Lee, H.S. A running stability test of 1/5 scaled bnogie using small-scaled derailment simulator. KISTI 2012, 15, 9–16. [Google Scholar] [CrossRef]
- Carson, J.S. Introduction to modeling and simulation. Johns Hopkins APL Tech. Dig. 1995, 12, 6–17. [Google Scholar]
- Shin, B.S.; Kim, D.C.; Kim, Y.J.; Kim, H.J.; Nam, J.S.; Park, Y.J.; Shim, S.B.; Lee, D.H.; Lee, J.W.; Cho, Y.J.; et al. Tractor Engineering Principles, 2nd ed.; Moon Woon Dang: Seoul, Republic of Korea, 2021. [Google Scholar]
- Jang, M.K.; Hwang, S.J.; Shin, C.S.; Nam, J.S. A novel approach to determine static falling down sidelong angle of tractor using a 3D printed miniature model. Appl. Sci. 2021, 12, 43. [Google Scholar] [CrossRef]
- Baker, V.; Guzzomi, A.L. A Model and Comparison of 4-wheel-drive fixed-chassis tractor rollover during Phase 1. Biosyst. Eng. 2013, 116, 179–189. [Google Scholar]
- No. 2017–668; Performance of Automobiles and Automobile Parts and Detailed Rules for Implementation of Standards. Ministry of Land, Infrastructure and Transport: Sejong-si, Republic of Korea, 2017.
- No. 789-6:2019; Agricultural Tractors-Test Procedures-Part 6: Centre of Gravity. ISO: Geneva, Switzerland, 2019.
- Khot, S.S.; Navthar, R.R. Design and optimization of front axle of heavy truck. IJEAST 2019, 4, 183–191. [Google Scholar] [CrossRef]
- Kim, T.J.; Jeon, H.H.; Kim, Y.J. Dynamic characteristic analysis of an autonomous tractor according to plow tillage. PASTJ 2019, 1, 56. [Google Scholar] [CrossRef]
- Lysych, M.N. Study driving dynamics of the machine-tractor unit on a virtual stand with obstacles. J. Phys. Conf. Ser. 2020, 1515, 042079. [Google Scholar] [CrossRef]
- Jeong, H.J.; Yu, J.W.; Lee, D.H. Track HM design for dynamic analysis of 4-tracked vehicle on rough terrain using Recurdyn. Trans. Korean Soc. Mech. Eng. A 2021, 45, 275–283. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lim, G.K.; Shin, S.Y.; Kim, H.J.; Kim, B.G.; Kim, H.G. Development of a turning radius measurement system using DGPS for agricultural tractors. J. Biosyst. Eng. 2010, 35, 85–90. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Pan, G.; Liu, H.; Liu, Z.; Zhang, J. Design and testing of a small remote-control hillside tractor. Trans. ASABE 2014, 57, 363–370. [Google Scholar] [CrossRef]
Items | Influencing Factors |
---|---|
Lateral overturning in stationary state | Wheelbase Track width Location of mass center Front-axle height |
Lateral overturning in steady state turning | Mass Location of mass center Wheelbase Track width |
Backward rollover in traveling on slopes | Mass Location of mass center Rear-axle height Weight distribution Geometric shape |
Total | Mass Wheelbase Track width Location of mass center Front-axle height Rear-axle height Weight distribution Geometric shape |
Items | Wheeled Tractors | Tracked Tractors |
---|---|---|
Wheelbase | Straight distance between centers of front and rear axles | Length of ground contact region |
Height of front and rear axles | Height of front and rear axles | Height of sprocket, idler, and roller |
Track width | Different distances between front and rear regions | Same distance between front and rear regions |
Items | Specifications | |
---|---|---|
Model | NST-1500VD | |
Length/width/height (mm) | 515/220/240 | |
Weight (kg) | 13.30 | |
Maximum lifting weight (kg) | 15 | |
Material | Alloy steel, stainless steel, aluminum alloy | |
Maximum traveling speed (km/h) | Forward | 0.52 |
Backward | 0.52 |
Items | Value | |
---|---|---|
Stainless steel (main body frame) | Poisson’s ratio | 0.3 |
Elastic modulus (GPa) | 180 | |
Density (kg/m3) | 7930 | |
Alloy steel (hydraulic cylinder, motor, sprocket, idler, and roller) | Poisson’s ratio | 0.3 |
Elastic modulus (GPa) | 210 | |
Density (kg/m3) | 1900 | |
Aluminum alloy (track) | Poisson’s ratio | 0.33 |
Elastic modulus (GPa) | 71 | |
Density (kg/m3) | 2700 |
Items | Value | |
---|---|---|
Interaction between track and ground | Stiffness coefficient (N/mm) | 108 |
Damping coefficient (N·s/mm) | 104 | |
Coefficient of dynamic friction | 1.5 | |
Coefficient of static friction | 1.85 |
Items | Value | |
---|---|---|
Interaction between track and ground | Stiffness coefficient (N/mm) | 103 |
Damping coefficient (N·s/mm) | 0.5 | |
Coefficient of dynamic friction | 1.2 | |
Coefficient of static friction | 1.55 |
Items | Track Width (mm) | Wheelbase (mm) |
---|---|---|
Actual tractor | 180.0 | 225.0 |
3D model | 178.6 | 227.3 |
Error rate (%) | 0.78 | 1.02 |
Items | Total Weight (kg) | Weight Distribution (kg) | |
---|---|---|---|
Left Track | Right Track | ||
Actual tractor | 13.30 | 6.55 | 6.75 |
3D model | 13.30 | 6.55 | 6.75 |
Error rate (%) | 0 | 0 | 0 |
Items | Coordinate (mm) | ||
---|---|---|---|
Horizontal | Vertical | Lateral | |
Actual tractor | 282.9 | 102.0 | 108.6 |
3D model | 283.4 | 101.9 | 107.4 |
Error rate (%) | 0.2 | 0.1 | 1.1 |
Item | Static Sidelong Falling Angle (°) |
---|---|
Practical test | 50.3 |
Simulation | 51.7 |
Error rate (%) | 2.73 |
Item | Minimum Turning Radius (mm) |
---|---|
Practical test | 163.14 |
Simulation | 162.19 |
Error rate (%) | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-J.; Jang, M.-K.; Nam, J.-S. Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation. Agriculture 2024, 14, 1991. https://doi.org/10.3390/agriculture14111991
Yang Y-J, Jang M-K, Nam J-S. Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation. Agriculture. 2024; 14(11):1991. https://doi.org/10.3390/agriculture14111991
Chicago/Turabian StyleYang, Yun-Jeong, Moon-Kyeong Jang, and Ju-Seok Nam. 2024. "Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation" Agriculture 14, no. 11: 1991. https://doi.org/10.3390/agriculture14111991
APA StyleYang, Y.-J., Jang, M.-K., & Nam, J.-S. (2024). Dynamic Simulation Model of Miniature Tracked Forestry Tractor for Overturning and Rollover Safety Evaluation. Agriculture, 14(11), 1991. https://doi.org/10.3390/agriculture14111991