The Impact of Feed Management Technologies on Mineral Oil Hydrocarbons (MOH) Contamination: A Comparative Farm Level Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sampling Sites
2.2. Protocol, Reagents, and Standards
2.3. Sample Preparation
2.4. LC–GC–FID Analysis and Instrument Conditions
2.5. MOH Quantification and Method Validation
3. Results
3.1. MOSH and MOAH in Animal Feed
3.2. Technological Operations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lăpușneanu, D.M.; Radu-Rusu, C.G.; Matei, M.; Petrescu, S.I.; Pop, I.M. Aflatoxins occurrence and levels in maize from a Romanian feed mill. Sci. Pap. Ser. D. Anim. Sci. 2024, LXVII, 110–114. [Google Scholar]
- Postolache, A.N.; Chelmu, S.S.; Ariton, A.M.; Ciorpac, M.; Pop, C.; Ciobanu, M.M.; Creangă, Ș. Analysis of RASFF notifications on contaminated dairy products from the last two decades: 2000–2020. Rom. Biotechnol. Lett. 2020, 25, 1396–1406. [Google Scholar] [CrossRef]
- Boișteanu, P.C.; Flocea, E.-I.; Anchidin, B.G.; Mădescu, B.M.; Matei, M.; Murariu, O.C.; Frunză, G.; Postolache, A.N.; Ciobanu, M.M. Essential and toxic elements analysis of wild boar tissues from north-eastern Romania and health risk implications. Front. Sustain. Food Syst. 2024, 8, 1406579. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Munteanu, M.; Postolache, A.N.; Boișteanu, P.C. Toxic heavy metals content in wild boar and venison meat: A brief review. Sci. Pap. Ser. D Anim. Sci. 2020, LXIII, 435–441. [Google Scholar]
- Kim, M.; Cho, B.H.; Lim, C.M.; Kim, D.G.; Yune, S.Y.; Shin, J.Y.; Bong, Y.H.; Kang, J.; Kim, M.A.; Son, S.W. Chemical residues and contaminants in foods of animal origin in Korea during the past decade. J. Agric. Food Chem. 2013, 61, 2293–2298. [Google Scholar] [CrossRef]
- Mierliță, D.; Teușdea, A.C.; Matei, M.; Pascal, C.; Simeanu, D.; Pop, I.M. Effect of Dietary Incorporation of Hemp Seeds Alone or with Dried Fruit Pomace on Laying Hens’ Performance and on Lipid Composition and Oxidation Status of Egg Yolks. Animals 2024, 14, 750. [Google Scholar] [CrossRef]
- Lake, I.R.; Foxall, C.D.; Fernandes, A.; Lewis, M.; Rose, M.; White, O.; Dowding, A. Seasonal variations in the levels of PCDD/Fs, PCBs and PBDEs in cows’ milk. Chemosphere 2013, 90, 72–79. [Google Scholar] [CrossRef]
- Rusu, L.; Harja, M.; Suteu, D.; Dabija, A.; Favier, L. Pesticide Residues Contamination of Milk and Dairy Products. A case study: Bacău District Area, Romania. J. Environ. Prot. Ecol. 2016, 17, 1229–1241. [Google Scholar]
- Piskorska–Pliszczynska, J.; Maszewski, S.; Mikolajczyk, S.; Pajurek, M.; Strucinski, P.; Olszowy, M. Elimination of dioxins in milk by dairy cows after the long–term intake of contaminated sugar beet pellets. Food Addit. Contam. Part. A 2017, 34, 842–852. [Google Scholar] [CrossRef]
- Bedi, J.S.; Gill, J.P.S.; Kaur, P.; Aulakh, R.S. Pesticide residues in milk and their relationship with pesticide contamination of feedstuffs supplied to dairy cattle in Punjab (India). J. Anim. Feed Sci. 2018, 27, 18–25. [Google Scholar] [CrossRef]
- Matei, M.; Pop, I.M. Mineral oil hydrocarbons (MOH) analysis in animal feed: A characterization based on modern pollution. Sci. Pap. Ser. D Anim. Sci. 2023, LXVI, 113–122. [Google Scholar]
- Grob, K. Update on recycled paperboard and its compliance for food contact. J. Verbrauch. Lebensm. 2014, 9, 213–219. [Google Scholar] [CrossRef]
- Canavar, Ö.; Kappenstein, O.; Luch, A. The analysis of saturated and aromatic mineral oil hydrocarbons in dry foods and from recycled paperboard packages by online HPLC-GC-FID. Food Addit.Contam. Part A 2018, 35, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Matei, M.; Petrescu, S.-I.; Flocea, E.-I.; Lăpușneanu, D.M.; Simeanu, D.; Pop, I.M. Variation in mineral oil hydrocarbons content of milk during processing. Sci. Pap. Ser. D. Anim. Sci. 2024, LXVII, 490–499. [Google Scholar]
- Barp, L.; Kornauth, C.; Würger, T.; Rudas, M.; Biedermann, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, part I: Concentrations and molecular mass distributions. Food Chem. Toxicol. 2014, 72, 312–321. [Google Scholar] [CrossRef]
- Barp, L.; Biedermann, M.; Grob, K.; Blas-Y-Estrada, F.; Nygaard, U.C.; Alexander, J.; Cravedi, J.P. Accumulation of mineral oil saturated hydrocarbons (MOSH) in female Fischer344 rats: Comparison with human data and consequences for risk assessment. Sci. Total Environ. 2017, 575, 1263–1278. [Google Scholar] [CrossRef]
- Barp, L.; Biedermann, M.; Grob, K.; Blas-Y-Estrada, F.; Nygaard, U.C.; Alexander, J.; Cravedi, J.P. Mineral oil saturated hydrocarbons (MOSH) in female Fischer 344 rats; accumulation of wax components; implications for risk assessment. Sci. Total Environ. 2017, 583, 319–333. [Google Scholar] [CrossRef]
- Grob, K. Could the Ukrainian sunflower oil contaminated with mineral oil wake up sleeping dogs? Eur. J. Lipid Sci. Technol. 2008, 110, 979–981. [Google Scholar]
- Biedermann, M.; Grob, K. How “white” was the mineral oil in the contaminated Ukrainian sunflower oils? Eur. J. Lipid Sci. Technol. 2009, 111, 313–319. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on mineral oil hydrocarbons in food. EFSA J. 2012, 10, 2704. [Google Scholar]
- Bauwens, G.; Conchione, C.; Sdrigotti, N.; Moret, S.; Purcaro, G. Quantification and characterization of mineral oil in fish feed by liquid chromatography-gas chromatography-flame ionization detector and liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer/flame ionization detector. J. Chromatogr. A 2022, 1677, 463208. [Google Scholar] [PubMed]
- Nestola, M. Automated workflow utilizing saponification and improved epoxidation for the sensitive determination of mineral oil saturated and aromatic hydrocarbons in edible oils and fats. J. Chromatogr. A 2022, 1682, 463523. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Update of the risk assessment of mineral oil hydrocarbons in food. EFSA J. 2023, 21, e08215. [Google Scholar]
- Hochegger, A.; Moret, S.; Geurt, L.; Gude, T.; Meitner, E.; Mertens, B.; O’Hagan, S.; Poças, F.; Simat, T.; Purcaro, G. Mineral oil risk assessment: Knowledge gaps and roadmap. Outcome of a multi-stakeholders workshop. Trends Food Sci. Technol. 2021, 113, 151–166. [Google Scholar] [CrossRef]
- Srbinovska, A.; Conchione, C.; Celaj, F.; Menegoz Ursol, L.; Moret, S. High sensitivity determination of mineral oils and olefin oligomers in cocoa powder and related packaging: Method validation and market survey. Food Chem. 2022, 396, 133686. [Google Scholar]
- Grob, K.; Vass, M.; Biedermann, M.; Neukom, H.-P. Contamination of animal feed and food from animal origin with mineral oil hydrocarbons. Food Addit. Contam. 2001, 18, 1–10. [Google Scholar] [CrossRef]
- Van-Heyst, A.; Goscinny, S.; Bel, S.; Vandevijvere, S.; Mertens, B.; Elskens, M.; Van Hoeck, E. Dietary exposure of the Belgian population to mineral oil. Food Addit. Contam. Part A 2020, 37, 267–279. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, 309, 1–50. [Google Scholar]
- European Commission. Commission implementing regulation (EU) No 540/2011 of 25 may 2011 implementing regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. Off. J. Eur. Union 2011, 153, 1–186. [Google Scholar]
- Grob, K. Toxicological Assessment of Mineral Hydrocarbons in Foods: State of Present Discussions. J. Agric. Food Chem. 2018, 66, 6968–6974. [Google Scholar] [CrossRef]
- Brühl, L. Occurrence, determination, and assessment of mineral oils in oilseeds and vegetable oils. Eur. J. Lipid Sci. Technol. 2016, 118, 361–372. [Google Scholar] [CrossRef]
- Hidalgo Ruiz, J.L.; Arrebola Liebanas, J.; Martinez Vidal, J.L.; Garrido Frenich, A.; Romero Gonzalez, R. Offline Solid-Phase Extraction and Separation of Mineral Oil Saturated Hydrocarbons and Mineral Oil Aromatic Hydrocarbons in Edible Oils, and Analysis via GC with a Flame Ionization Detector. Foods 2021, 10, 2026. [Google Scholar] [CrossRef] [PubMed]
- Menegoz Ursol, L.; Conchione, C.; Peroni, D.; Carretta, A.; Moret, S. A study on the impact of harvesting operations on the mineral oil contamination of olive oils. Food Chem. 2023, 406, 135032. [Google Scholar] [CrossRef]
- Mertens, B.; Van Heyst, A.; Demaegdt, H.; Boonen, I.; Van Den Houwe, K.; Goscinny, S.; Elskens, M.; Van Hoeck, E. Assessment of hazards and risks associated with dietary exposure to mineral oil for the Belgian population. Food Chem. Toxicol. 2021, 149, 112034. [Google Scholar] [CrossRef]
- Foodwatch. International Tests of Various Food Products for Their Contamination by Mineral Oil Hydrocarbons (MOSH/MOAH), Project-Report. 2021. Available online: https://www.foodwatch.org/fileadmin/-INT/mineral_oil/documents/2021-12-03_technical__minoil__project_report.pdf (accessed on 2 April 2023).
- Bratinova, S.; Hoekstra, S. Guidance on Sampling, Analysis and Data Reporting for the Monitoring of Mineral Oil Hydrocarbons in Food and Food Contact Materials, 1st ed.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Bratinova, S.; Robouch, P.; Hoekstra, E.; Bratinova, S. Guidance on Sampling, Analysis and Data Reporting for the Monitoring of Mineral Oil Hydrocarbons in Food and Food Contact Materials, 2nd ed.; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- European Union. Commission Recommendation (EU) 2017/84 of 16 January 2017 on the monitoring of mineral oil hydrocarbons in food and in materials and articles intended to come into contact with food. Off. J. Eur. Union 2017, 12, 95–96. [Google Scholar]
- Matei, M.; Pop, I.M. Monitoring of dairy farms to assess the potential level of pollution of animal feed and animal production. Sci. Pap. Ser. D. Anim. Sci. 2022, LXV, 129–136. [Google Scholar]
- SR EN ISO 6497:2005; Animal Feeding Stuffs. Sampling. International Organization for Standardization: Geneva, Switzerland, 2005.
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 52, 1–130. [Google Scholar]
- SR EN ISO 6498:2012; Animal Feeding Stuffs. Guidelines for Sample Preparation. International Organization for Standardization: Geneva, Switzerland, 2012.
- Nestola, M.; Schmidt, T.C. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography–gas chromatography–flame ionization detection—Evaluation of automated removal strategies for biogenic olefins. J. Chromatogr. A 2017, 1505, 69–76. [Google Scholar] [CrossRef]
- Biedermann, M.; Fiselier, K.; Grob, K. Aromatic hydrocarbons of mineral oil origin in foods: Method for determining the total concentration and first result. J. Agric. Food Chem. 2009, 57, 8711–8721. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. On-line coupled high performance liquid chromatography- gas chromatography for the analysis of contamination by mineral oil. Part 1: Method of analysis. J. Chromatogr. A 2012, 1255, 56–75. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. On-line coupled high performance liquid chromatography- gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: Interpretation of chromatograms. J. Chromatogr. A 2012, 1255, 76–99. [Google Scholar] [CrossRef] [PubMed]
- Moret, S.; Scolaro, M.; Barp, L.; Purcaro, G.; Conte, L.S. Microwave assisted saponification (MAS) followed by on-line liquid chromatography (LC)-gas chromatography (GC) for high-throughput and high-sensitivity determination of mineral oil in different cereal-based foodstuffs. Food Chem. 2016, 196, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Menegoz Ursol, L.; Conchione, C.; Srbinovska, A.; Moret, S. Optimization and validation of microwave assisted saponification (MAS) followed by epoxidation for high-sensitivity determination of mineral oil aromatic hydrocarbons (MOAH) in extra virgin olive oil. Food Chem. 2022, 370, 130966. [Google Scholar] [CrossRef]
- Srbinovska, A.; Gasparotto, L.; Conchione, C.; Menegoz Ursol, L.; Lambertini, F.; Suman, M.; Moret, S. Mineral oil contamination in basil pesto from the Italian market: Ingredient contribution and market survey. J. Food Compos. Anal. 2023, 115, 104914. [Google Scholar] [CrossRef]
- Magnusson, B.; Ornemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods–A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Middlesex, UK, 2014; Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 2 April 2023).
- SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 5 May 2023).
- European Commission. Summary Report. Standing Committee on Plants, Animals, Food and Feed. Section Novel Food and Toxicological Safety of the Food Chain, 21 April 2022. Available online: https://food.ec.europa.eu/system/files/2022-07/reg-com_toxic_20220421_sum.pdf (accessed on 31 March 2023).
- Jaén, J.; Domeño, C.; Úbeda, S.; Aznar, M.; Nerín, C. Migration of mineral oil aromatic hydrocarbons (MOAH) from cardboard containers to dry food and prediction tool. Food Control 2022, 138, 109016. [Google Scholar] [CrossRef]
- Buijtenhuijs, D.; van de Ven, B.M. Mineral Oils in Food; a Review of Occurrence and Sources, RIVM Letter Report 2019-0048; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2019; pp. 1–59. [Google Scholar]
- Albendea, P.; Conchione, C.; Menegoz Ursol, L.; Moret, S. A Study on Mineral Oil Hydrocarbons (MOH) Contamination in Pig Diets and Its Transfer to Back Fat and Loin Tissues. Animals 2024, 14, 1450. [Google Scholar] [CrossRef]
Farm and Category | Sample Code | Sample Name | % of the Ration | Origin | Crop Location | |
---|---|---|---|---|---|---|
d—Traffic/Roads * | d—Inhabited Areas (No.) | |||||
L1 Low risk | L1–NH | Natural hay | 100 (summer) | Internal | 500 m/medium ~6 km/intensive (urban) | 500 m/medium ~6 km/intensive (urban) |
L1–MP | Mountain pasture | 100 (winter) | Internal | ~5 km/medium | >7 km (269) | |
TOTAL (L1): 2 | ||||||
M2 Medium risk | M2–AH | Alfalfa hay | 22.4 | Internal | >10 km/intensive (S1) ~2 km/intensive (S2) | ~6 km (4.577)/rural ~4 km (271.692)/urban |
M2–CS | Corn silage | 56 | Internal | ~6 km/intensive | ~6 km (271.692)/urban | |
M2–C | Corn grains | 11.20 | Internal | <15 km/intensive | ~4 km (4.577)/rural | |
M2–S | Soya | 8.40 | External purchase | - | - | |
M2–CF | Combined feed *** | 100 | Internal | AH, CS, C, S | ||
TOTAL (M2): 5 | ||||||
H3 High risk | H3–AH | Alfalfa hay | 5.45 | Internal | ~1 km/intensive ~1 km/medium ** | ~2 km (271.692) |
H3–AS | Alfalfa Silage | 10.9 | Internal | ~1 km/intensive ~1 km/medium ** | ~2 km (271.692) | |
H3–CS | Corn silage | 45.45 | Internal | ~4 km/intensive ~1 km/medium ** | ~2 km (271.692) | |
H3–C | Corn grains | 6.35 | Internal | ~1 km/intensive ~1 km/medium ** | ~2 km (271.692) | |
H3–S | Soya | 7.1 | External purchase | - | - | |
H3–T | Triticale | 4.54 | Internal | ~5 km/medium | ~4 km (2.067) | |
H3–BSG | Brewer’s grains | 18.18 | External purchase | - | - | |
H3–CF | Combined feed *** | 100 | Internal | AH, AS, CS, C, S, T, BSG | ||
TOTAL (H3): 8 |
Sample | Market Formula | Active Ingredient |
---|---|---|
M2–AH | Pulsar 40 | 40 g/L Imazamox |
M2–CS | Sulfammo–25–APPM–1 | 25% N (18% ammoniacal N; 7% N nitric); 31% SO3; 2% MgO |
Principal Plus | 9.2% Nicosulfuron; 55% Dicamba; 2.3% Rimsulfuron | |
M2–C | DAP 18–46–0 | 18% NH4; 46% P2O5 |
Sulfammo–25–APPM–1 | 25% N (18% ammoniacal N; 7% N nitric); 31% SO3; 2% MgO | |
Principal Plus | 9.2% Nicosulfuron; 55% Dicamba; 2.3% Rimsulfuron | |
H3–CS and H3–C | Urea | CO(NH2)2 |
NPK 20–20–0 Complex | 20% total N; 20% total P2O5; 60% P2O5 water soluble; 98% P2O5 soluble in citric acid 2%; max. 0.6% water | |
Ammonium nitrate | 27% N; 7% CaO; 5% MgO | |
Henik | 40 g/L Nicosulfuron | |
Mustang | 6.25% Florasulfam; 30% Acid 2,4D EHE | |
Adengo | 225 g/L Isoxaflutol; 90 g/L Thiencarbazone-methyl; 150 g/L Cyprosulfamides | |
H3–AH and H3–AS | 16–16–16 Complex | 16:16:16 N:P:K |
Corum | 480 g/L Bentazon; 22.4 g/L Imazamox | |
H3–T | Urea | CO(NH2)2 |
Ammonium nitrate | 27% N; 7% CaO; 5% MgO | |
Lebosol | 1.6% Cu—Cu2Cl(OH)3 25 g/L; 11.5% Mn—MnO2 183 g/L; 4.9% Zn—ZnO 78 g/L | |
Pixxaro Super | 12 g/L Halauxifen-methyl; 280 g/L Fluroxy-pyr meptyl; 12 g/L Cloquintocet-mexyl | |
Orius | 250 g/L Tebuconazole | |
Falcon Pro | 53 g/L Prothioconazole; 224 g/L Spiroxamine; 148 g/L Tebuconazole | |
Mospilan | 20% Acetamiprid |
Sample | MOSH | MOAH | Feeding | Technological Operations Applied to Crops | Storage | ||||
---|---|---|---|---|---|---|---|---|---|
Phytosanitary Treatments (P) and Fertilisation (F) | Harvesting/ Handling | Equipment | Area | Type/ Material | |||||
mg/kg | Type | Formula */ Quantity (ha) | |||||||
L1–NH | 21.6 | 1.6 | Manually | Organic/Manually | - | Mechanised | (a) Mowing/harvesting machine (b) Transport vehicle | Half-open | Traditional wooden construction |
L1–MP | 27.4 | 1.2 | Manually | - | - | - | - | - | - |
M2–AH | 23.3 | 1.7 | Technological trailer | Organic and Chemical/Mechanised | P: Pulsar 40 (1.1 L/ha) | Mechanised | (a) Sprinkler pump (b) Mowing/harvesting machine (c) Transport vehicle (d) Baler | Open | Unwrapped bales |
M2–CS | 26.5 | 0.5 | Technological trailer | Organic and Chemical/Mechanised | F: Sulfammo–25–APPM–1 (170 kg/ha) P: Principal Plus (440 g/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle (d) Crawler tractor | Open | Concrete cell covered with polyethylene film |
M2–C | 35.0 | 2.5 | Technological trailer | Organic and Chemical/Mechanised | F: DAP 18–46–0 (250 kg/ha); Sulfammo–25–APPM–1 (250 kg/ha) P: Principal Plus (440 g/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle | Closed | Polypropylene bags |
M2–S | 11.4 | 0.6 | Technological trailer | - | - | Mechanised | Transport and unloading vehicle | Closed | Polypropylene bags |
M2–CF | 28.1 | 0.8 | Technological trailer | - | - | Mechanised | Technological trailer | - | - |
H3–AH | 29.0 | 1.3 | Technological trailer | Organic and Chemical/Mechanised | F: Complex 16–16–16 (250 kg/ha) P: Corum (1.2 L/ha) | Mechanised | (a) Sprinkler pump (b) Mowing/harvesting machine (c) Transport vehicle (d) Baler and foil press | Open | Polyethylene foiled bales |
H3–AS | 42.6 | 2.2 | Technological trailer | Organic and Chemical/Mechanised | F: Complex 16–16–16 (250 kg/ha) P: Corum (1.2 L/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle (d) Crawler tractor | Open | Concrete cell covered with polyethylene film |
H3–CS | 24.9 | <LOQ ** | Technological trailer | Organic and Chemical/Mechanised | F: urea (100 kg/ha); NPK 20–20–0 (100 kg/ha); Ammonium nitrate (150 kg/ha) P: Henik (1.5 L/ha); Mustang (0.6L/ha); Adengo (0.4 L/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle (d) Crawler tractor | Open | Concrete cell covered with polyethylene film |
H3–C | 81.4 | 4.6 | Technological trailer | Organic and Chemical/Mechanised | F: urea (100 kg/ha); NPK 20–20–0 (100 kg/ha); Ammonium nitrate (150 kg/ha) P: Henik (1.5 L/ha); Mustang (0.6L/ha); Adengo (0.4 L/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle | Closed | Silo |
H3–S | 16.9 | 1.0 | Technological trailer | - | - | Mechanised | Transport and unloading vehicle | Closed | Silo |
H3–T | 30.4 | <LOQ ** | Technological trailer | Organic and Chemical/Mechanised | F: urea (150 kg/ha); Ammonium nitrate (150 kg/ha); Lebosol (1.5 L/ha); P (I): Pixxaro Super (0.3 L/ha); P(II): Orius, Falcon Pro (0.5 L/ha) P(III): Mospilan (0.15 L/ha) | Mechanised | (a) Sprinkler pump (b) Harvesting machine (c) Transport vehicle | Closed | Silo |
H3–BSG | 57.3 | 3.4 | Technological trailer | - | - | Mechanised | Transport and unloading vehicle | Open | Concrete platform |
H3–CF | 50.9 | 0.5 | Technological trailer | - | - | Mechanised | Technological trailer | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, M.; Petrescu, S.I.; Mădescu, B.M.; Lăpușneanu, D.M.; Simeanu, D.; Boișteanu, P.C.; Pop, I.M. The Impact of Feed Management Technologies on Mineral Oil Hydrocarbons (MOH) Contamination: A Comparative Farm Level Approach. Agriculture 2024, 14, 2008. https://doi.org/10.3390/agriculture14112008
Matei M, Petrescu SI, Mădescu BM, Lăpușneanu DM, Simeanu D, Boișteanu PC, Pop IM. The Impact of Feed Management Technologies on Mineral Oil Hydrocarbons (MOH) Contamination: A Comparative Farm Level Approach. Agriculture. 2024; 14(11):2008. https://doi.org/10.3390/agriculture14112008
Chicago/Turabian StyleMatei, Mădălina, Silvia Ioana Petrescu, Bianca Maria Mădescu, Dragoș Mihai Lăpușneanu, Daniel Simeanu, Paul Corneliu Boișteanu, and Ioan Mircea Pop. 2024. "The Impact of Feed Management Technologies on Mineral Oil Hydrocarbons (MOH) Contamination: A Comparative Farm Level Approach" Agriculture 14, no. 11: 2008. https://doi.org/10.3390/agriculture14112008
APA StyleMatei, M., Petrescu, S. I., Mădescu, B. M., Lăpușneanu, D. M., Simeanu, D., Boișteanu, P. C., & Pop, I. M. (2024). The Impact of Feed Management Technologies on Mineral Oil Hydrocarbons (MOH) Contamination: A Comparative Farm Level Approach. Agriculture, 14(11), 2008. https://doi.org/10.3390/agriculture14112008