Response of Long-Term Water and Phosphorus of Wheat to Soil Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Soil Sample Collection
2.3. Soil Environment Factor
2.4. Measurements of Photosynthesis-Related Parameters
2.5. DNA Extraction, PCR Amplification, and Sequencing
2.6. Processing of Sequencing Data
2.7. Statistical Analyses
3. Results
3.1. Wheat Yield and Photosynthesis
3.2. Changes in Soil Properties
3.3. Bacterial and Fungal Diversity Index and Abundance
3.4. Composition of the Bacterial and Fungal Communities
3.5. Prediction of Fungal and Bacterial Function
3.6. Link Between Microbial Biodiversity and Soil Environmental Factors
3.7. Co-Occurrence Analysis
3.8. Relationships Between the Soil Microbial Community and Wheat Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Langhans, C.; Beusen, A.H.W.; Mogollón, J.M.; Bouwman, A.F. Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nat. Sustain. 2022, 5, 57–63. [Google Scholar] [CrossRef]
- Kang, J.; Chu, Y.; Ma, G.; Zhang, Y.; Zhang, X.; Wang, M.; Lu, H.; Wang, L.; Kang, G.; Ma, D.; et al. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. Crop J. 2023, 11, 638–650. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef]
- Wilpiszeski, R.L.; Aufrecht, J.A.; Retterer, S.T.; Sullivan, M.B.; Graham, D.E.; Pierce, E.M.; Zablocki, O.D.; Palumbo, A.V.; Elias, D.A. Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. Appl. Environ. Microbiol. 2019, 85, e00324-19. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Swanson, S.; Gilroy, S. Calcium: From Root Macronutrient to Mechanical Signal; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Q.; Hui, X.; Ran, J.; Ma, Q.; Wang, X.; Wang, Z. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biol. Biochem. 2020, 149, 107918. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, M.; Tang, L.; Shen, Y.; Yu, Q.; Li, S. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm. Sci. Total Environ. 2022, 817, 152878. [Google Scholar] [CrossRef]
- Qiu, H.; Mei, X.; Liu, C.; Wang, J.; Wang, G.; Wang, X.; Liu, Z.; Cai, Y. Fine mapping of quantitative trait loci for acid phosphatase activity in maize leaf under low phosphorus stress. Mol. Breed. 2013, 32, 629–639. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.-Z.; Mu, H.-F.; Dang, T.-H. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Pedosphere 2010, 20, 304–310. [Google Scholar] [CrossRef]
- Piegholdt, C.; Geisseler, D.; Koch, H.J.; Ludwig, B. Long-term tillage effects on the distribution of phosphorus fractions of loess soils in Germany. J. Plant Nutr. Soil Sci. 2013, 176, 217–226. [Google Scholar] [CrossRef]
- Liu, Z.-P.; Shao, M.-A.; Wang, Y.-Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197–198, 67–78. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Rufty, T.W. Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Secur. 2012, 1, 94–98. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Wu, Y.; Wang, J.; Zhao, Z.; Li, Y.; Qiao, L.; Chen, K.; Liu, G.; Xue, S. Direct and indirect influences of long-term fertilization on microbial carbon and nitrogen cycles in an alpine grassland. Soil Biol. Biochem. 2020, 149, 107922. [Google Scholar] [CrossRef]
- Spohn, M.; Treichel, N.S.; Cormann, M.; Schloter, M.; Fischer, D. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol. Biochem. 2015, 89, 44–51. [Google Scholar] [CrossRef]
- Dan, A.; Zhang, N.; Qiu, R.; Li, C.; Wang, S.; Ni, Z. Accelerated biodegradation of p-tert-butylphenol in the Phragmites australis rhizosphere by phenolic root exudates. Environ. Exp. Bot. 2020, 169, 103891. [Google Scholar] [CrossRef]
- Su, J.-Q.; Ding, L.-J.; Xue, K.; Yao, H.-Y.; Quensen, J.; Bai, S.-J.; Wei, W.-X.; Wu, J.-S.; Zhou, J.; Tiedje, J.M.; et al. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol. Ecol. 2015, 24, 136–150. [Google Scholar] [CrossRef]
- Li, H.; Bi, Q.; Yang, K.; bo Lasson, S.; Zheng, B.; Cui, L.; Zhu, Y.; Ding, K. High starter phosphorus fertilization facilitates soil phosphorus turnover by promoting microbial functional interaction in an arable soil. J. Environ. Sci. 2020, 94, 179–185. [Google Scholar] [CrossRef]
- Santoro, V.; Schiavon, M.; Visentin, I.; Constán-Aguilar, C.; Cardinale, F.; Celi, L. Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant Cell Environ. 2021, 44, 3628–3642. [Google Scholar] [CrossRef]
- Dixon, M.; Simonne, E.; Obreza, T.; Liu, G. Crop Response to Low Phosphorus Bioavailability with a Focus on Tomato. Agronomy 2020, 10, 617. [Google Scholar] [CrossRef]
- Lu, R. Methods for Agrochemical Analysis of Soils. 2000. Available online: https://www.hanspub.org/reference/referencepapers?ReferenceID=6086 (accessed on 14 October 2024).
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Song, X.; Li, N.; Zhang, K.; Liu, G.; Li, X.; Wang, Z.; He, X.; Wang, G.; Shao, H. Influence of high-carbon basal fertiliser on the structure and composition of a soil microbial community under tobacco cultivation. Res. Microbiol. 2018, 169, 115–126. [Google Scholar] [CrossRef]
- Wemheuer, F.; Taylor, J.A.; Daniel, R.; Johnston, E.; Wemheuer, B. Tax4Fun2: A R-based tool for the rapid prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene marker gene sequences. bioRxiv 2018. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Q.; Li, S.; Ge, J.; Liang, C.; Qin, H.; Xu, Q.; Fuhrmann, J.J. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest. Geoderma 2019, 354, 113894. [Google Scholar] [CrossRef]
- Gu, Y.; Ros, G.H.; Zhu, Q.; Zheng, D.; Shen, J.; Cai, Z.; Xu, M.; de Vries, W. Responses of total, reactive and dissolved phosphorus pools and crop yields to long-term fertilization. Agric. Ecosyst. Environ. 2023, 357, 108658. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013, 2, 587. [Google Scholar] [CrossRef]
- Zhu, W.-B.; Zhao, X.; Wang, S.-Q.; Wang, Y. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils. Agric. Ecosyst. Environ. 2019, 286, 106652. [Google Scholar] [CrossRef]
- Chen, J.; Gong, J.; Xu, M. Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation. Eur. J. Soil Biol. 2020, 97, 103172. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, L.; Chen, H.; Chen, G.; Wang, S.; Zhao, X.; Wang, Y. Responses of soil phosphorus pools accompanied with carbon composition and microorganism changes to phosphorus-input reduction in paddy soils. Pedosphere 2021, 31, 83–93. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, Y.; Zhao, X.; Chen, H.; Chen, G.; Wang, S. Seven years of biochar amendment has a negligible effect on soil available P and a progressive effect on organic C in paddy soils. Biochar 2022, 4, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, H.; Chen, Q.; Han, X. The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosyste. Soil Biol. Biochem. 2014, 72, 26–34. [Google Scholar] [CrossRef]
- Czarnecki, O.; Yang, J.; Weston, D.J.; Tuskan, G.A.; Chen, J.-G. A Dual Role of Strigolactones in Phosphate Acquisition and Utilization in Plants. Int. J. Mol. Sci. 2013, 14, 7681–7701. [Google Scholar] [CrossRef]
- Joshi, S.R.; Morris, J.W.; Tfaily, M.M.; Young, R.P.; Mcnear, D.H. Low soil phosphorus availability triggers maize growth stage specific rhizosphere processes leading to mineralization of organic P. Plant Soil 2021, 459, 423–440. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Sánchez Rodríguez, A.R. Influencia de la Fertilización Fosfatada en la Clorosis Férica; Universidad de Córdoba, Servicio de Publicaciones: Córdoba, Spain, 2013; Available online: http://hdl.handle.net/10396/11410 (accessed on 1 November 2024).
- Sharpley, A.N.; Mcdowell, R.W.; Kleinman, P.J.A. Amounts, Forms, and Solubility of Phosphorus in Soils Receiving Manure. Soil Sci. Soc. Am. J. 2004, 68, 2048–2057. [Google Scholar] [CrossRef]
- Richardson, A.E.; Hocking, P.J.; Simpson, R.J.; George, T.S. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 2009, 60, 124–143. [Google Scholar] [CrossRef]
- Faucon, M.-P.; Houben, D.; Lambers, H. Plant Functional Traits: Soil and Ecosystem Services. Trends Plant Sci. 2017, 22, 385–394. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol. Mol. Biol. Rev. MMBR 2017, 81, e00063-16. [Google Scholar] [CrossRef]
- Eichorst, S.A.; Trojan, D.; Roux, S.; Herbold, C.; Rattei, T.; Woebken, D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 2018, 20, 1041–1063. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Kang, J.; Wang, J.; Chen, Y.; Lu, H.; Wang, L.; Wang, C.; Xie, Y.; Ma, D.; Kang, G. Bacterial Community Structure and Predicted Function in Wheat Soil From the North China Plain Are Closely Linked with Soil and Plant Characteristics After Seven Years of Irrigation and Nitrogen Application. Front. Microbiol. 2020, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Jiang, C.; Wu, M.; Song, R.; Gui, R.; Jia, J.; Li, Z. Improved nutrient status affects soil microbial biomass, respiration, and functional diversity in a Lei bamboo plantation under intensive management. J. Soils Sediments 2017, 17, 917–926. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.; Gong, Q.; Zhai, B.; Li, Z. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol. Biochem. 2018, 125, 54–63. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.; Qi, J.; Gao, J.; Wei, G. Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. mSystems 2021, 6, e01052-20. [Google Scholar] [CrossRef]
- Li, B.-B.; Roley, S.S.; Duncan, D.S.; Guo, J.; Quensen, J.F.; Yu, H.-Q.; Tiedje, J.M. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses. Soil Biol. Biochem. 2021, 160, 108349. [Google Scholar] [CrossRef]
- Lu, L.; Yin, S.; Liu, X.; Zhang, W.; Gu, T.; Shen, Q.; Qiu, H. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monocultur. Soil Biol. Biochem. 2013, 65, 186–194. [Google Scholar] [CrossRef]
- Freilich, M.A.; Wieters, E.; Broitman, B.R.; Marquet, P.A.; Navarrete, S.A. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology 2018, 99, 690–699. [Google Scholar] [CrossRef]
- Luo, J.; Banerjee, S.; Ma, Q.; Liao, G.; Hu, B.; Zhao, H.; Li, T. Organic fertilization drives shifts in microbiome complexity and keystone taxa increase the resistance of microbial mediated functions to biodiversity loss. Biol. Fertil. Soils 2023, 59, 441–458. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Gonzatto, R.; Aita, C.; Lupatini, M.; Jacques, R.J.S.; Kuramae, E.E.; Antoniolli, Z.I.; Roesch, L.F.W. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol. Biochem. 2016, 97, 71–82. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, C.R.; Mustafa, Z.; Viliunas, J. Soil microbes alter plant fitness under competition and drought. J. Evol. Biol. 2019, 32, 438–450. [Google Scholar] [CrossRef]
Treatment | Spike Number (104 ha−1) | 1000-Kernel Weight (g) | Kernel Number (per Ear) | Yield (kg ha−1) | Photosynthetic Rate (μmol m−2·s−1) | Transpiration Rate (mmol m−2·s−1) | Stomatal Conductance (mmol m−2·s−1) |
---|---|---|---|---|---|---|---|
W0P0 | 339.3 ± 5.25 c | 39.23 ± 0.34 b | 39.20 ± 2.27 ab | 4437.15 ± 18.97 c | 10.03 ± 1.74 b | 2.18 ± 0.54 b | 0.14 ± 0.04 b |
W1P0 | 399.3 ± 23.35 ab | 47.21 ± 3.54 a | 42.00 ± 4.60 a | 6751.8 ± 62.49 ab | 14.68 ± 1.21 a | 4.01 ± 0.27 a | 0.34 ± 0.06 a |
W0P1 | 417.75 ± 60.3 b | 43.08 ± 0.68 ab | 37.07 ± 2.19 b | 5624.1 ± 85.06 bc | 6.53 ± 2.17 c | 1.15 ± 0.35 c | 0.07 ± 0.02 c |
W1P1 | 568.55 ± 56.36 a | 47.03 ± 0.92 a | 40.17 ± 3.20 a | 8348.25 ± 90.53 a | 12.95 ± 1.52 a | 3.59 ± 0.41 a | 0.3 ± 0.04 a |
W | * | ** | ns | ** | ** | ** | ** |
P | * | ns | ns | ** | ** | * | ** |
W × P | ns | ns | ns | ns | ns | ns | ns |
Treatment | W0P0 | W0P1 | W1P0 | W1P1 | p Value | ||
---|---|---|---|---|---|---|---|
W | P | W × P | |||||
pH | 7.64 ± 0.09 b | 7.89 ± 0.23 a | 7.63 ± 0.15 b | 7.9 ± 0.23 a | <0.001 | <0.001 | 0.043 |
TC (g kg−1) | 7.99 ± 0.1 a | 7.46 ± 0.23 a | 7.61 ± 0.41 b | 7.02 ± 0.45 a | 0.06 | 0.871 | 0.018 |
TN (g kg−1) | 1.04 ± 0.05 a | 0.95 ± 0.06 a | 0.97 ± 0.02 a | 0.87 ± 0.01 a | 0.013 | 0.999 | 0.004 |
TP (g kg−1) | 0.85 ± 0.07 a | 1.18 ± 0.06 a | 0.83 ± 0.08 a | 1.18 ± 0.05 a | 0.046 | <0.001 | <0.001 |
NO3−N (mg kg−1) | 5.3 ± 0.33 b | 5.91 ± 0.57 a | 4.96 ± 0.57 b | 6.36 ± 0.67 b | 0.863 | 0.252 | 0.013 |
NH4+N (mg kg−1) | 12.29 ± 0.38 b | 16.21 ± 0.6 a | 15.44 ± 1.41 a | 17.26 ± 2.01 a | 0.022 | 0.193 | 0.05 |
AvP (mg kg−1) | 1.98 ± 0.25 b | 6.89 ± 0.55 a | 4.25 ± 0.07 b | 9.43 ± 0.84 a | <0.001 | 0.651 | <0.001 |
AvK (mg kg−1) | 72.63 ± 11.36 b | 103.03 ± 4.3 a | 63.88 ± 22.72 b | 88.59 ± 25.82 a | 0.303 | 0.794 | 0.031 |
PA (ug(g.24 h)−1) | 918.82 ± 90.35 b | 1042.55 ± 105.95 a | 956.13 ± 315.35 b | 1514.44 ± 301 a | 0.09 | 0.139 | 0.033 |
UA (ug(g.2 h)−1) | 52.65 ± 14 a | 57.81 ± 2.83 a | 46.91 ± 1.99 a | 47.89 ± 5.46 a | 0.117 | 0.651 | 0.51 |
SA (mg(g.24 h)−1) | 60.36 ± 9.71 a | 58.73 ± 12.61 a | 54.54 ± 5.6 a | 49.25 ± 3.88 a | 0.164 | 0.723 | 0.508 |
Al-P (mg kg−1) | 44.24 ± 1.76 a | 47.35 ± 1.07 a | 41.33 ± 2.11 a | 42.85 ± 3.36 a | 0.021 | 0.11 | 0.055 |
Fe-P (mg kg−1) | 33.78 ± 1.67 b | 39.32 ± 1.67 ab | 35.92 ± 2.08 b | 42.25 ± 4.35 a | 0.141 | 0.005 | 0.805 |
O-P (mg kg−1) | 62.28 ± 1.88 a | 64.52 ± 2.61 a | 64.05 ± 2.32 a | 64.61 ± 1.59 a | 0.473 | 0.29 | 0.516 |
Ca2-P (mg kg−1) | 4.96 ± 1.02 cd | 20.35 ± 2.44 a | 5.2 ± 0.08 cd | 11.64 ± 3.42 b | 0.009 | <0.001 | 0.007 |
Ca8-P (mg kg−1) | 114.78 ± 10.61 bc | 130.52 ± 17.14 a | 119.05 ± 4.97 b | 108.06 ± 4.53 bc | 0.177 | 0.709 | 0.061 |
Ca10-P (mg kg−1) | 54.74 ± 3.15 b | 202.16 ± 9.95 a | 207.67 ± 16.18 a | 201.37 ± 0.93 a | <0.001 | <0.001 | <0.001 |
Microorganism | Treatment | OTU Richness | ACE Index | Chao1 Index | Shannon Index |
---|---|---|---|---|---|
Bacteria | W0P0 | 1942.3 ± 30.7 ab | 1948.56 ± 12.53 c | 1966.05 ± 10.27 c | 9.37 ± 0.01 c |
W0P1 | 1919.7 ± 4.0 b | 1956.41 ± 3.73 c | 1971.04 ± 6.44 bc | 9.39 ± 0.03 c | |
W1P0 | 1943.3 ± 9.9 ab | 1975.46 ± 9.18 a | 1989.23 ± 13.79 b | 9.63 ± 0 a | |
W1P1 | 1967.7 ± 7.0 a | 1997.17 ± 6.76 b | 2012.2 ± 8.10 a | 9.51 ± 0.01 b | |
Fungus | W0P0 | 274 ± 19.92 b | 290.42 ± 22.87 c | 305.44 ± 26 c | 3.72 ± 0.24 c |
W0P1 | 282.3 ± 13.20 b | 318.7 ± 23.91 bc | 326.61 ± 28.76 bc | 4.35 ± 0.07 b | |
W1P0 | 337.7 ± 7.02 a | 355.26 ± 8.16 ab | 360.64 ± 9.63 ab | 5.07 ± 0.27 a | |
W1P1 | 334.7 ± 9.29 a | 366.26 ± 22.11 a | 384.04 ± 37.72 a | 4.51 ± 0.39 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Lian, Y.; Guo, H.; Li, Z.; Pang, H.; Zhang, M.; Ren, Y.; Lin, T.; Wang, Z. Response of Long-Term Water and Phosphorus of Wheat to Soil Microorganisms. Agriculture 2024, 14, 2022. https://doi.org/10.3390/agriculture14112022
Hu J, Lian Y, Guo H, Li Z, Pang H, Zhang M, Ren Y, Lin T, Wang Z. Response of Long-Term Water and Phosphorus of Wheat to Soil Microorganisms. Agriculture. 2024; 14(11):2022. https://doi.org/10.3390/agriculture14112022
Chicago/Turabian StyleHu, Junjie, Yanhao Lian, Hui Guo, Zongzhen Li, Haifang Pang, Mengjiao Zhang, Yongzhe Ren, Tongbao Lin, and Zhiqiang Wang. 2024. "Response of Long-Term Water and Phosphorus of Wheat to Soil Microorganisms" Agriculture 14, no. 11: 2022. https://doi.org/10.3390/agriculture14112022
APA StyleHu, J., Lian, Y., Guo, H., Li, Z., Pang, H., Zhang, M., Ren, Y., Lin, T., & Wang, Z. (2024). Response of Long-Term Water and Phosphorus of Wheat to Soil Microorganisms. Agriculture, 14(11), 2022. https://doi.org/10.3390/agriculture14112022