Genetic Diversity and Genome-Wide Association Study of Pleurotus pulmonarius Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. DNA Extraction and Sequencing
2.3. Identification and Screening of SNP
2.4. Population Genetic Analysis and Construction of Fingerprints
2.5. Cultivation Test and Trait Screening
2.6. Genome-Wide Association Study
3. Results
3.1. Quality Statistics of Sequencing Data and Discovery of SNPs
3.2. Population Genetic Analysis Based on Whole-Genome Wide SNP Markers
3.2.1. Phylogenetic Relationship
3.2.2. Genetic Diversity Analysis
3.2.3. Population Structure
3.3. Evaluation of Agronomic Traits in P. pulmonarius
3.4. GWAS Analysis Results
4. Discussion
4.1. Genetic Diversity Analysis of P. pulmonarius Based on SNP
4.2. Evaluation of Agronomic Traits
4.3. Genome-Wide Association Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, J.; Liu, X.; Xie, B.; Liu, F.; Deng, Y.; Xiong, F. Analysis of germplasm resources of Pleurotus geesteranus by ITS-RFLP. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2009, 38, 186–191. [Google Scholar]
- Liu, X.; Ye, L.; Zhang, L.; Xie, B.; Wu, X. Mating type analyses of cultivated Pleurotus pulmonarius in China. Mycosystema 2021, 40, 3109–3117. [Google Scholar]
- Chen, G.G.; Lin, Y.; Liu, X.R.; Zhao, G.H.; Chen, J. Recent advances in genetics and breeding of Pleurotus pulmonarius. Chin. J. Trop. Crops 2017, 38, 1377–1381. [Google Scholar]
- Lee, H.Y.; Moon, S.; Shim, D.; Hong, C.P.; Lee, Y.; Koo, C.D.; Chung, J.W.; Ryu, H. Development of 44 Novel Polymorphic SSR Markers for Determination of Shiitake Mushroom (Lentinula edodes) Cultivars. Genes 2017, 8, 109. [Google Scholar] [CrossRef]
- Saito, T.; Sakuta, G.; Kobayashi, H.; Ouchi, K.; Inatomi, S. Genetically Independent Tetranucleotide to Hexanucleotide Core Motif SSR Markers for Identifying Lentinula edodes Cultivars. Mycobiology 2019, 47, 466–472. [Google Scholar] [CrossRef]
- Kim, K.H.; Ka, K.H.; Kang, J.H.; Kim, S.; Lee, J.W.; Jeon, B.K.; Yun, J.K.; Park, S.R.; Lee, H.J. Identification of Single Nucleotide Polymorphism Markers in the Laccase Gene of Shiitake Mushrooms (Lentinula edodes). Mycobiology 2015, 43, 75–80. [Google Scholar] [CrossRef]
- Liu, X.B.; Feng, B.; Li, J.; Yan, C.; Yang, Z.L. Genetic diversity and breeding history of Winter Mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene 2016, 591, 227–235. [Google Scholar] [CrossRef]
- Liu, X.B.; Li, J.; Yang, Z.L. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers. Hereditas 2018, 155, 3. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Wang, Q.; Qu, J.; Zhang, J.; Huang, C. Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers. J. Integr. Agric. 2019, 18, 580–589. [Google Scholar] [CrossRef]
- Rostoks, N.; Ramsay, L.; Mackenzie, K.; Cardle, L.; Bhat, P.R.; Roose, M.L.; Svensson, J.T.; Stein, N.; Varshney, R.K.; Marshall, D.F.; et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc. Natl. Acad. Sci. USA 2006, 103, 18656–18661. [Google Scholar] [CrossRef] [PubMed]
- Okuda, Y.; Murakami, S.; Matsumoto, T. A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome 2009, 52, 438–446. [Google Scholar] [CrossRef]
- Vidal-Diez, D.U.G.; Lee, Y.Y.; Stajich, J.E.; Schwarz, E.M.; Hsueh, Y.P. Genomic analyses of two Italian oyster mushroom Pleurotus pulmonarius strains. G3 2021, 11, jkaa007. [Google Scholar] [CrossRef]
- Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177. [Google Scholar] [CrossRef]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef]
- Olsen, K.M.; Halldorsdottir, S.S.; Stinchcombe, J.R.; Weinig, C.; Schmitt, J.; Purugganan, M.D. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 2004, 167, 1361–1369. [Google Scholar] [CrossRef]
- Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef]
- Li, C.; Gong, W.; Zhang, L.; Yang, Z.; Nong, W.; Bian, Y.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Association Mapping Reveals Genetic Loci Associated with Important Agronomic Traits in Lentinula edodes, Shiitake Mushroom. Front. Microbiol. 2017, 8, 237. [Google Scholar] [CrossRef]
- Cardoso, W.S.; Soares, F.; Queiroz, P.V.; Tavares, G.P.; Santos, F.A.; Sufiate, B.L.; Kasuya, M.; de Queiroz, J.H. Minimum cocktail of cellulolytic multi-enzyme complexes obtained from white rot fungi via solid-state fermentation. 3 Biotech 2018, 8, 46. [Google Scholar] [CrossRef]
- Corner, E.J.H. The Agaric Genera Lentinus, Panus, and Pleurotus, with Particular Reference to Malaysian Species; J. Cramer: Vaduz, Liechtenstein, 1981; p. 169. ISBN 85192445. [Google Scholar]
- Yu, H.; Zhang, L.; Shang, X.; Peng, B.; Li, Y.; Xiao, S.; Tan, Q.; Fu, Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genom. 2022, 23, 120. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; van Peer, A.F.; Sonnenberg, A.; Zhao, M.; Gao, W. Fine Mapping and Functional Analysis of the Gene PcTYR, Involved in Control of Cap Color of Pleurotus cornucopiae. Appl. Environ. Microbiol. 2022, 88, e0217321. [Google Scholar] [CrossRef]
- Huang, X.; Duan, N.; Xu, H.; Xie, T.N.; Xue, Y.R.; Liu, C.H. CTAB-PEG DNA Extraction from Fungi with High Contents of Polysaccharides. Mol. Biol. 2018, 52, 718–726. [Google Scholar] [CrossRef]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; Mccarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; Depristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Slifer, S.H. PLINK: Key Functions for Data Analysis. Curr. Protoc. Hum. Genet. 2018, 97, e59. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, H.; Xiang, X.; Yang, A.; Feng, Q.; Dai, P.; Li, Y.; Jiang, X.; Liu, G.; Zhang, X. Construction of a SNP Fingerprinting Database and Population Genetic Analysis of Cigar Tobacco Germplasm Resources in China. Front. Plant Sci. 2021, 12, 618133. [Google Scholar] [CrossRef]
- Valeri, L.; Vanderweele, T.J. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychol. Methods 2013, 18, 137–150. [Google Scholar] [CrossRef]
- Mucha, A.; Wierzbicki, H. Linear models for breeding values prediction in haplotype-assisted selection—An analysis of QTL-MAS Workshop 2011 Data. BMC Proc. 2012, 6 (Suppl. S2), S11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed]
- Trick, M.; Long, Y.; Meng, J.; Bancroft, I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol. J. 2009, 7, 334–346. [Google Scholar] [CrossRef]
- Schlotterer, C. The evolution of molecular markers--just a matter of fashion? Nat. Rev. Genet. 2004, 5, 63–69. [Google Scholar] [CrossRef]
- Cabezas, J.A.; Ibanez, J.; Lijavetzky, D.; Velez, D.; Bravo, G.; Rodriguez, V.; Carreno, I.; Jermakow, A.M.; Carreno, J.; Ruiz-Garcia, L.; et al. A 48 SNP set for grapevine cultivar identification. BMC Plant Biol. 2011, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Qu, J.; Zhang, J.; Sonnenberg, A.; Chen, Q.; Zhang, Y.; Huang, C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genom. 2018, 19, 18. [Google Scholar] [CrossRef]
- An, H.; Lee, H.Y.; Shim, D.; Choi, S.H.; Cho, H.; Hyun, T.K.; Jo, I.H.; Chung, J.W. Development of CAPS Markers for Evaluation of Genetic Diversity and Population Structure in the Germplasm of Button Mushroom (Agaricus bisporus). J. Fungi 2021, 7, 375. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Shi, X.; Chen, L.; Qin, J.; Zhang, M.; Yang, C.; Song, Q.; Yan, L. Development of SNP marker panels for genotyping by target sequencing (GBTS) and its application in soybean. Mol. Breed. 2023, 43, 26. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Weijn, A.; Baars, J.J.; Mes, J.J.; Visser, R.G.; Sonnenberg, A.S. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet. Biol. 2015, 77, 69–81. [Google Scholar] [CrossRef]
- Gu, M.; Chen, Q.; Zhang, Y.; Zhao, Y.; Wang, L.; Wu, X.; Zhao, M.; Gao, W. Evaluation of Genetic Diversity and Agronomic Traits of Germplasm Resources of Stropharia rugosoannulata. Horticulturae 2024, 10, 213. [Google Scholar] [CrossRef]
- Tian, H.L.; Wang, F.G.; Zhao, J.R.; Yi, H.M.; Wang, L.; Wang, R.; Yang, Y.; Song, W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol. Breed. 2015, 35, 136. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Han, R.; Zhang, F.; Mao, A.; Luo, J.; Dong, B.; Liu, H.; Tang, H.; Zhang, J.; et al. Target SSR-Seq: A Novel SSR Genotyping Technology Associate with Perfect SSRs in Genetic Analysis of Cucumber Varieties. Front. Plant Sci. 2019, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Baars, J.; Maliepaard, C.; Visser, R.; Zhang, J.; Sonnenberg, A. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms). AMB Express 2016, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, Y.; Wei, X.; Li, C.; Wang, A.; Zhao, Q.; Li, W.; Guo, Y.; Deng, L.; Zhu, C.; et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 2011, 44, 32–39. [Google Scholar] [CrossRef]
- Atwell, S.; Huang, Y.S.; Vilhjalmsson, B.J.; Willems, G.; Horton, M.; Li, Y.; Meng, D.; Platt, A.; Tarone, A.M.; Hu, T.T.; et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010, 465, 627–631. [Google Scholar] [CrossRef]
- Morris, G.P.; Ramu, P.; Deshpande, S.P.; Hash, C.T.; Shah, T.; Upadhyaya, H.D.; Riera-Lizarazu, O.; Brown, P.J.; Acharya, C.B.; Mitchell, S.E.; et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 2013, 110, 453–458. [Google Scholar] [CrossRef]
Sample Name | Group | Sample Name for Analysis | Name Interpretation |
---|---|---|---|
CCMSSC00313 | ZP 1 | ZP1 | Cultivation |
CCMSSC00493 | ZP | ZP2 | Cultivation |
CCMSSC00494 | ZP | ZP3 | Cultivation |
CCMSSC00498 | ZP | ZP4 | Cultivation |
CCMSSC00499 | ZP | ZP5 | Cultivation |
CCMSSC03815 | ZP | ZP6 | Cultivation |
CCMSSC03836 | ZP | ZP7 | Cultivation |
CCMSSC03886 | ZP | ZP8 | Cultivation |
CCMSSC03897 | ZP | ZP9 | Cultivation |
CCMSSC04423 | ZP | ZP10 | Cultivation |
CCMSSC04537 | ZP | ZP11 | Cultivation |
R08026 | ZP | ZP12 | Cultivation |
R08027 | ZP | ZP13 | Cultivation |
CCMSSC01106 | WSC | WSC1 | Sichuan wild |
CCMSSC01108 | WSC | WSC2 | Sichuan wild |
CCMSSC01109 | WSC | WSC3 | Sichuan wild |
CCMSSC01110 | WSC | WSC4 | Sichuan wild |
CCMSSC01111 | WSC | WSC5 | Sichuan wild |
CCMSSC01114 | WSC | WSC6 | Sichuan wild |
CCMSSC01116 | WSC | WSC7 | Sichuan wild |
CCMSSC01118 | WSC | WSC8 | Sichuan wild |
CCMSSC01119 | WSC | WSC9 | Sichuan wild |
CCMSSC01120 | WSC | WSC10 | Sichuan wild |
CCMSSC01123 | WSC | WSC11 | Sichuan wild |
CCMSSC04199 | WHLJ | WHLJ | Heilongjiang wild |
CCMSSC04458 | CBS | CBS1 | CBS |
CCMSSC04459 | CBS | CBS2 | CBS |
CCMSSC04460 | CBS | CBS3 | CBS |
CCMSSC04461 | CBS | CBS4 | CBS |
CCMSSC04462 | CBS | CBS5 | CBS |
CCMSSC01301 | WYN | WYN1 | Yunnan wild |
CCMSSC04584 | WYN | WYN2 | Yunnan wild |
CCMSSC04585 | WYN | WYN3 | Yunnan wild |
CCMSSC04586 | WYN | WYN4 | Yunnan wild |
CCMSSC04587 | WYN | WYN5 | Yunnan wild |
CCMSSC04588 | WYN | WYN6 | Yunnan wild |
CCMSSC04592 | WYN | WYN7 | Yunnan wild |
CCMSSC04593 | WYN | WYN8 | Yunnan wild |
CCMSSC04591 | WSX | WSX | Shaanxi wild |
CCMSSC04594 | WLN | WLN1 | Liaoning wild |
CCMSSC04595 | WLN | WLN2 | Liaoning wild |
CCMSSC04597 | WJL | WJL1 | Jilin wild |
CCMSSC04598 | WJL | WJL2 | Jilin wild |
CCMSSC04599 | WHB | WHB1 | Hubei wild |
CCMSSC04600 | WHB | WHB2 | Hubei wild |
CCMSSC04601 | WHB | WHB3 | Hubei wild |
CCMSSC04602 | WHB | WHB4 | Hubei wild |
Group | Average MAF | Nei Diversity Index | Observed Heterozygous Number | Polymorphism Information Content |
---|---|---|---|---|
CBS | 0.229 | 0.200–0.667 (0.361) 1 | 0.200–1.000 (0.243) | 0.164–0.375 (0.265) |
WHB | 0.255 | 0.250–0.667 (0.399) | 0.250–1.000 (0.409) | 0.195–0.375 (0.281) |
WJL | 0.326 | 0.500–0.667 (0.550) | 0.500–1.000 (0.606) | 0.305–0.375 (0.326) |
WLN | 0.328 | 0.500–0.667 (0.552) | 0.500–1.000 (0.598) | 0.305–0.375 (0.327) |
WSC | 0.202 | 0.091–0.556 (0.303) | 0.091–1.000 (0.293) | 0.083–0.375 (0.238) |
WYN | 0.231 | 0.125–0.667 (0.343) | 0.125–1.000 (0.296) | 0.110–0.375 (0.260) |
ZP | 0.207 | 0.077–0.533 (0.287) | 0.077–1.000 (0.435) | 0.071–0.375 (0.226) |
Trait | SamNum 1 | Mean | Sd 2 | Median | Min 3 | Max 4 | Range | CV 5 |
---|---|---|---|---|---|---|---|---|
CL | 42 | 30.75 | 5.06 | 31.36 | 20.32 | 47.85 | 27.53 | 16.45% |
CW | 42 | 33.81 | 6.33 | 33.29 | 23.29 | 50.99 | 27.70 | 18.72% |
SD | 42 | 13.80 | 4.01 | 13.33 | 5.50 | 25.56 | 20.07 | 29.05% |
SL | 42 | 27.47 | 7.47 | 27.03 | 10.73 | 45.77 | 35.04 | 27.18% |
PPG | 42 | 34.86 | 6.54 | 33 | 31 | 64 | 33 | 18.76% |
PIH | 42 | 42.40 | 10.37 | 38 | 36 | 79 | 43 | 24.45% |
YFB | 42 | 15.30 | 11.06 | 10.41 | 2.15 | 42.76 | 40.61 | 72.32% |
Trait | Scaffold | p-Value | −log10p | Allele | MAF 1 | SNP ID | PVE 2 |
---|---|---|---|---|---|---|---|
CL 3 | SJKF01000008.1 | 6.03 × 10−6 | 5.22 | A/G | 0.39 | rs_474319 | 0.02% |
CW | SJKF01000016.1 | 3.92 × 10−6 | 5.41 | A/C | 0.41 | rs_338157 | 40.45% |
SJKF01000008.1 | 3.36 × 10−6 | 5.47 | A/G | 0.39 | rs_474319 | 0.38% | |
SJKF01000011.1 | 6.11 × 10−6 | 5.21 | T/C | 0.22 | rs_949638 | 0.30% | |
SJKF01000010.1 | 2.40 × 10−6 | 5.62 | C/T | 0.41 | rs_1934108 | 0.43% | |
SJKF01000006.1 | 3.44 × 10−7 | 6.46 | T/A | 0.17 | rs_3071735 | 47.30% | |
SJKF01000003.1 | 8.07 × 10−6 | 5.09 | T/C | 0.2 | rs_3643242 | 48.76% | |
SD | SJKF01000005.1 | 2.34 × 10−6 | 5.63 | A/G | 0.21 | rs_3145491 | 4.29% |
SL | SJKF01000013.1 | 7.60 × 10−6 | 5.12 | G/T | 0.28 | rs_459476 | 19.54% |
SJKF01000007.1 | 3.04 × 10−6 | 5.52 | G/A | 0.13 | rs_499031 | 28.29% | |
SJKF01000004.1 | 1.14 × 10−6 | 5.94 | C/T | 0.12 | rs_1310326 | 20.78% | |
SJKF01000004.1 | 7.99 × 10−6 | 5.1 | T/C | 0.43 | rs_2224699 | 4.55% | |
SJKF01000005.1 | 9.00 × 10−6 | 5.05 | G/A | 0.27 | rs_2285326 | 32.72% | |
YFB | SJKF01000008.1 | 7.24 × 10−6 | 5.14 | T/G | 0.17 | rs_885485 | 0.64% |
SJKF01000002.1 | 5.17 × 10−6 | 5.29 | A/C | 0.27 | rs_4651725 | 65.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ying, X.; Yang, Y.; Gao, W. Genetic Diversity and Genome-Wide Association Study of Pleurotus pulmonarius Germplasm. Agriculture 2024, 14, 2023. https://doi.org/10.3390/agriculture14112023
Li Q, Ying X, Yang Y, Gao W. Genetic Diversity and Genome-Wide Association Study of Pleurotus pulmonarius Germplasm. Agriculture. 2024; 14(11):2023. https://doi.org/10.3390/agriculture14112023
Chicago/Turabian StyleLi, Qian, Xuebing Ying, Yashu Yang, and Wei Gao. 2024. "Genetic Diversity and Genome-Wide Association Study of Pleurotus pulmonarius Germplasm" Agriculture 14, no. 11: 2023. https://doi.org/10.3390/agriculture14112023
APA StyleLi, Q., Ying, X., Yang, Y., & Gao, W. (2024). Genetic Diversity and Genome-Wide Association Study of Pleurotus pulmonarius Germplasm. Agriculture, 14(11), 2023. https://doi.org/10.3390/agriculture14112023