Evaluating Enteric Fermentation-Driven Environmental Kuznets Curve Dynamics: A Bayesian Vector Autoregression Comparative Study of the EU and Least Developed Countries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. Break Unit Root Tests
3.3. Impulse Response Analysis
3.4. Variance Decomposition Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- IPCC. Climate Change 2014: Mitigation of Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- FAO. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; Climate, Energy and Tenure Division; FAO: Rome, Italy, 2014; 89p, 3.5 MB. [Google Scholar]
- FAOSTAT. 2021. Available online: https://www.fao.org/3/cb3808en/cb3808en.pdf (accessed on 26 September 2022).
- European Environment Agency (EEA). Agriculture and Climate Change–Nitrous Oxide Emissions; European Environment Agency (EEA): Copenhagen, Denmark, 2021. [Google Scholar]
- Eurostat. Greenhouse Gas Emissions from Agriculture. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Agriculture_-_greenhouse_gas_emission_statistics (accessed on 24 June 2022).
- IPCC. Refinements to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 26 September 2022).
- Murawska, A.; Prus, P. The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions. Sustainability 2021, 13, 1035. [Google Scholar] [CrossRef]
- EEA, Air Quality in Europe—2019 Report. EEA Report No 10/2019, European Environment Agency. 2019. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 22 July 2022).
- EEA. EU Emissions of Ammonia. 2020. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-agriculture (accessed on 22 July 2022).
- UNEP Annual Report 2022. 2022. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/41679/Annual_Report_2022.pdf?sequence=3 (accessed on 29 October 2022).
- European Environment Agency. Annual European Union Greenhouse Gas Inventory 1990–2017 and Inventory Report 2019: Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol (EEA/PUBL/2019/051). European Environment Agency. 2019. Available online: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019 (accessed on 16 June 2022).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through livestock–A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; FAO: Rome, Italy, 2006. [Google Scholar]
- FAO. Available online: http://www.fao.org/gleam/ (accessed on 22 September 2024).
- Leip, A.; Weiss, F.; Wassenaar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS) Final Report; European Commission, Joint Research Centre: Brussels, Belgium, 2010; 323p, Available online: http://ec.europa.eu/agriculture/analysis/external/livestock-gas/ (accessed on 27 October 2024).
- Kleftodimos, G.; Kyrgiakos, L.S.; Kleisiari, C.; Tagarakis, A.C.; Bochtis, D. Examining farmers’ adoption decisions towards precision-agricultural practices in Greek dairy cattle farms. Sustainability 2021, 14, 411. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. Emission factors and carbon emissions of CH4 from enteric fermentation of cattle produced under different management systems in South Africa. J. Clean. Prod. 2020, 265, 121931. [Google Scholar] [CrossRef]
- IFAD. Rural Development Report 2021|Transforming Food Systems for Rural Prosperity. 2021. Available online: https://www.ifad.org/documents/48415603/49775134/rdr2021.pdf/e6bad6ea-8dac-b478-a1c5-29522ba414cf?t=1726642391930 (accessed on 14 May 2022).
- Food and Agriculture Organization of the United Nations. Methane Emissions in Livestock and Rice Systems. FAO. 2022. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/805a3926-13e2-4d38-b926-315be0091b07/content (accessed on 22 September 2024).
- Tongwane, M.I.; Moeletsi, M.E. Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa. Environ. Res. 2021, 195, 110833. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric CH4 emissions in beef cattle: A meta-analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Ibidhi, R.; Kim, T.H.; Bharanidharan, R.; Lee, H.J.; Lee, Y.K.; Kim, N.Y.; Kim, K.H. Developing country-specific CH4 emission factors and carbon fluxes from enteric fermentation in South Korean dairy cattle production. Sustainability 2021, 13, 9133. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. 2019. Available online: https://www.fao.org/family-farming/detail/en/c/1245425/ (accessed on 2 November 2022).
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Greenhouse gas emissions from agriculture in EU countries—State and perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Azam, M. CO2 emissions and economic performance in EU agriculture: Some evidence from Mediterranean countries. Ecol. Indic. 2017, 81, 104–114. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Sofios, S.; Partalidou, X. Environmental Kuznets curve for EU agriculture: Empirical evidence from new entrant EU countries. Environ. Sci. Pollut. Res. 2017, 24, 15510–15520. [Google Scholar] [CrossRef]
- Aan den Toorn, S.I.; Worrell, E.; Van Den Broek, M.A. How much can combinations of measures reduce CH4 and nitrous oxide emissions from European livestock husbandry and feed cultivation? J. Clean. Prod. 2021, 304, 127138. [Google Scholar] [CrossRef]
- Tagarakis, A.C.; Dordas, C.; Lampridi, M.; Kateris, D.; Bochtis, D. A Smart Farming System for Circular Agriculture. Eng. Proc. 2021, 9, 10. [Google Scholar] [CrossRef]
- Fischer, A.; Edouard, N.; Faverdin, P. Precision feed restriction improves feed and milk efficiencies and reduces CH4 emissions of less efficient lactating Holstein cows without impairing their performance. J. Dairy Sci. 2020, 103, 4408–4422. [Google Scholar] [CrossRef] [PubMed]
- Ngwabie, N.M.; Jeppsson, K.H.; Gustafsson, G.; Nimmermark, S. Effects of animal activity and air temperature on CH4 and ammonia emissions from a naturally ventilated building for dairy cows. Atmos. Environ. 2011, 45, 6760–6768. [Google Scholar] [CrossRef]
- Mosnier, C.; Ridier, A.; Képhaliacos, C.; Carpy-Goulard, F. Economic and environmental impact of the CAP mid-term review on arable crop farming in South-western France. Ecol. Econ. 2009, 68, 1408–1416. [Google Scholar] [CrossRef]
- Kleftodimos, G.; Gallai, N.; Rozakis, S.; Képhaliacos, C. A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms. Land Use Policy 2021, 107, 105462. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristov, A.N.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting rapidly to deploy readily available CH4 mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- Goldstein, J.; Tyfield, D. Green Keynesianism: Bringing the entrepreneurial state back in (to question)? Sci. Cult. 2018, 27, 74–97. [Google Scholar] [CrossRef]
- Tienhaara, K. Regulatory chill in a warming world: The threat to climate policy posed by investor-state dispute settlement. Transnatl. Environ. Law 2018, 7, 229–250. [Google Scholar] [CrossRef]
- Gurbuz, I.B.; Nesirov, E.; Ozkan, G. Does agricultural value-added induce environmental degradation? Evidence from Azerbaijan. Environ. Sci. Pollut. Res. 2021, 28, 23099–23112. [Google Scholar] [CrossRef]
- Prastiyo, S.E.; Irham; Hardyastuti, S.; Jamhari. How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environ. Sci. Pollut. Res. 2020, 27, 42092–42103. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef] [PubMed]
- Doğan, N. The impact of agriculture on CO2 emissions in China. Panoeconomicus 2019, 66, 257–271. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Xu, M. Investigation of pollution haven hypothesis for China: An ARDL approach with breakpoint unit root tests. J. Clean. Prod. 2017, 161, 153–164. [Google Scholar] [CrossRef]
- Lütkepohl, H. Vector autoregressive models. In Handbook of Research Methods and Applications in Empirical Macroeconomics; Edward Elgar Publishing: Cheltenham, UK, 2013. [Google Scholar]
- Ivanov, V.; Kilian, L. A practitioner’s guide to lag order selection for VAR impulse response analysis. Stud. Nonlinear Dyn. Econom. 2005, 9. [Google Scholar] [CrossRef]
- Giannone, D.; Reichlin, L.; Sala, L. VARs, common factors, and the empirical validation of equilibrium business cycle models. J. Econom. 2006, 132, 257–279. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S.R. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Kang, S.H.; Islam, F.; Tiwari, A.K. The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model. Struct. Change Econ. Dyn. 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Pearan, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Brahmasrene, T.; Huang, J.C.; Sissoko, Y. Crude oil prices and exchange rates: Causality, variance decomposition and impulse response. Energy Econ. 2014, 44, 407–412. [Google Scholar] [CrossRef]
- Selcuk, M.; Gormus, S.; Guven, M. Do agriculture activities matter for environmental Kuznets curve in the Next Eleven countries? Environ. Sci. Pollut. Res. 2021, 28, 55623–55633. [Google Scholar] [CrossRef] [PubMed]
- Lütkepohl, H. Variance Decomposition. In Macroeconometrics and Time Series Analysis. The New Palgrave Economics Collection; Durlauf, S.N., Blume, L.E., Eds.; Palgrave Macmillan: London, UK, 2010. [Google Scholar] [CrossRef]
- Ali, G.; Ashraf, A.; Bashir, M.K.; Cui, S. Exploring environmental Kuznets curve (EKC) in relation to green revolution: A case study of Pakistan. Environ. Sci. Policy 2017, 77, 166–171. [Google Scholar] [CrossRef]
- Jakada, A.H.; Mahmood, S.; Ahmad, A.U.; Garba Muhammad, I.; Aliyu Danmaraya, I.; Sani Yahaya, N. Driving Forces of CO2 Emissions Based on Impulse Response Function and Variance Decomposition: A Case of the Main African Countries. Environ. Health Eng. Manag. J. 2022, 9, 223–232. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. A review on environmental Kuznets curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Harsányi, E.; Bashir, B.; Almhamad, G.; Hijazi, O.; Maze, M.; Elbeltagi, A.; Alsalman, A.; Enaruvbe, G.O.; Mohammed, S.; Szabó, S. GHGs Emission from the Agricultural Sector within EU-28: A Multivariate Analysis Approach. Energies 2021, 14, 6495. [Google Scholar] [CrossRef]
- Gorodnichenko, Y.; Lee, B. Forecast error variance decompositions with local projections. J. Bus. Econ. Stat. 2020, 38, 921–933. [Google Scholar] [CrossRef]
Variables | EMIL | EMIEU | VAL | VALEU |
---|---|---|---|---|
Mean | 0.486089 | 1.883134 | 0.022687 | 1.552735 |
Minimum | 0.501209 | 1.876174 | 0.017425 | 1.573746 |
Maxiimum | 0.906165 | 1.971992 | 0.048747 | 1.903699 |
Std. Dev | 0.156382 | 1.811860 | 0.001819 | 1.106403 |
Skewness | 0.217959 | 0.042733 | 0.019045 | 0.260658 |
Kurtosis | 0.031668 | 0.272423 | 0.121958 | −0.156242 |
Jarque–Bera | 1.876353 | 2.331038 | 1.285271 | 1.861752 |
Variables | ADF Break Unit Root | Break Date |
---|---|---|
EMIL | −2.31 (0.94) | 1999 |
ΔEMIL | −15.0 *** (0.000) | 1999 |
VAL | −3.8 (0.4) | 2004 |
ΔVAL | −5.58 *** (0.0) | 2009 |
EMIEU | −3.46 (0.4) | 2008 |
ΔEMIEU | −5.61 *** (0.00) | 2013 |
VAEU | −4.15 (0.10) | 2007 |
ΔVAEU | −6.35 *** (0.00) | 2004 |
Variance Decomposition of VADL | |||
---|---|---|---|
VADL | EMI | VADL2 | |
1 | 100.0000 | 0.000000 | 0.000000 |
2 | 99.39371 | 0.392220 | 0.214074 |
3 | 97.70229 | 1.400428 | 0.897285 |
4 | 95.26713 | 2.751638 | 1.981234 |
5 | 92.39760 | 4.221321 | 3.381077 |
6 | 89.32276 | 5.653920 | 5.023317 |
7 | 86.19809 | 6.951129 | 6.850781 |
8 | 83.12297 | 8.055826 | 8.821199 |
9 | 80.15687 | 8.938899 | 10.90423 |
10 | 77.33205 | 9.589652 | 13.07830 |
Variance Decomposition of EMI | |||
VADL | EMI | VADL2 | |
1 | 0.000000 | 100.0000 | 0.000000 |
2 | 0.053390 | 99.94364 | 0.002970 |
3 | 0.212939 | 99.78069 | 0.006376 |
4 | 0.474414 | 99.51838 | 0.007208 |
5 | 0.829778 | 99.16415 | 0.006068 |
6 | 1.270730 | 98.72226 | 0.007012 |
7 | 1.789329 | 98.19410 | 0.016575 |
8 | 2.377786 | 97.57928 | 0.042930 |
9 | 3.028251 | 96.87651 | 0.095241 |
10 | 3.732675 | 96.08412 | 0.183205 |
Variance Decomposition of VADL2 | |||
VADL | EMI | VADL2 | |
1 | 0.000000 | 0.000000 | 100.0000 |
2 | 0.163026 | 0.252150 | 99.58482 |
3 | 0.570995 | 1.042343 | 98.38666 |
4 | 1.218075 | 2.367871 | 96.41405 |
5 | 2.082154 | 4.191653 | 93.72619 |
6 | 3.128474 | 6.457918 | 90.41361 |
7 | 4.312343 | 9.097584 | 86.59007 |
8 | 5.582968 | 12.03307 | 82.38396 |
9 | 6.887412 | 15.18390 | 77.92869 |
10 | 8.174130 | 18.47231 | 73.35356 |
Variance Decomposition of EMIEU | |||
---|---|---|---|
EMIEU | VAL2EU | VALEU | |
1 | 70.58440 | 16.83577 | 12.57983 |
2 | 56.20259 | 24.17349 | 19.62392 |
3 | 45.97577 | 28.76420 | 25.26003 |
4 | 44.10802 | 29.82690 | 26.06508 |
5 | 43.38882 | 30.48412 | 26.12706 |
6 | 43.71350 | 30.53114 | 25.75536 |
7 | 45.87152 | 29.62558 | 24.50290 |
8 | 47.58596 | 28.92753 | 23.48652 |
9 | 47.82270 | 28.90423 | 23.27307 |
10 | 48.02201 | 28.87470 | 23.10330 |
Variance Decomposition of VAL2EU | |||
EMIEU | VAL2EU | VALEU | |
1 | 10.75408 | 45.08675 | 44.15918 |
2 | 6.513600 | 44.90754 | 48.57886 |
3 | 9.204746 | 43.22259 | 47.57267 |
4 | 11.61745 | 42.36195 | 46.02061 |
5 | 8.438216 | 43.37513 | 48.18665 |
6 | 7.483579 | 43.48588 | 49.03054 |
7 | 7.900617 | 43.33397 | 48.76541 |
8 | 7.836282 | 43.40417 | 48.75955 |
9 | 7.497365 | 43.45368 | 49.04895 |
10 | 7.536840 | 43.40093 | 49.06223 |
Variance Decomposition of VALEU | |||
EMIEU | VAL2EU | VALEU | |
1 | 8.260094 | 45.39321 | 46.34670 |
2 | 4.768531 | 44.95771 | 50.27375 |
3 | 6.229328 | 43.77199 | 49.99868 |
4 | 7.660582 | 43.32319 | 49.01622 |
5 | 5.564302 | 43.91868 | 50.51702 |
6 | 4.861758 | 43.91307 | 51.22517 |
7 | 5.050269 | 43.83203 | 51.11771 |
8 | 4.949976 | 43.89664 | 51.15338 |
9 | 4.666852 | 43.91331 | 51.41984 |
10 | 4.630180 | 43.88072 | 51.48910 |
Variable | RMSE | MAE |
---|---|---|
VADL | 0.007165 | 0.006070 |
EMI | 0.060794 | 0.045630 |
VADL2 | 0.000318 | 0.000222 |
Variable | RMSE | MAE |
---|---|---|
VALEU | 0.570113 | 0.489277 |
EMIEU | 0.186186 | 0.154723 |
VALEU2 | 0.017916 | 0.013457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiriou, E.; Galatsidas, S.; Moulogianni, C.; Sofios, S.; Arabatzis, G. Evaluating Enteric Fermentation-Driven Environmental Kuznets Curve Dynamics: A Bayesian Vector Autoregression Comparative Study of the EU and Least Developed Countries. Agriculture 2024, 14, 2036. https://doi.org/10.3390/agriculture14112036
Zafeiriou E, Galatsidas S, Moulogianni C, Sofios S, Arabatzis G. Evaluating Enteric Fermentation-Driven Environmental Kuznets Curve Dynamics: A Bayesian Vector Autoregression Comparative Study of the EU and Least Developed Countries. Agriculture. 2024; 14(11):2036. https://doi.org/10.3390/agriculture14112036
Chicago/Turabian StyleZafeiriou, Eleni, Spyros Galatsidas, Christina Moulogianni, Spyridon Sofios, and Garyfallos Arabatzis. 2024. "Evaluating Enteric Fermentation-Driven Environmental Kuznets Curve Dynamics: A Bayesian Vector Autoregression Comparative Study of the EU and Least Developed Countries" Agriculture 14, no. 11: 2036. https://doi.org/10.3390/agriculture14112036
APA StyleZafeiriou, E., Galatsidas, S., Moulogianni, C., Sofios, S., & Arabatzis, G. (2024). Evaluating Enteric Fermentation-Driven Environmental Kuznets Curve Dynamics: A Bayesian Vector Autoregression Comparative Study of the EU and Least Developed Countries. Agriculture, 14(11), 2036. https://doi.org/10.3390/agriculture14112036