Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Composition
2.3. HPLC Determination of Carbohydrates, Organic Acids, and Individual Polyphenols
2.4. Analysis of Total Phenolic Content (TPC)
2.5. Antioxidant Activity
2.6. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTG)
2.7. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.8. X-Ray Diffraction (XRD)
2.9. Scanning Electron Microscopy (SEM) Analysis
2.10. Atomic Force Microscopy (AFM) Analysis
3. Results
3.1. Chemical Composition
3.2. HPLC Determination of Carbohydrates, Organic Acids, and Individual Polyphenols
3.3. Determination of Total Phenolic Content and Antioxidant Capacity
3.4. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTG)
3.5. FTIR-ATR Analysis of Fruit and Vegetable Waste
3.6. X-Ray Diffraction Analysis
3.7. SEM Analysis
3.8. AFM Analysis
4. Discussion
4.1. Evaluation of Chemical Composition and Fiber Content of Fruit and Vegetable Waste
4.2. HPLC Determination of the Carbohydrates, Organic Acids, and Individual Polyphenols of Fruit and Vegetable Waste
4.3. Evaluation of Total Polyphenolic Content and Antioxidant Capacity of Fruit and Vegetable Waste
4.4. Evaluation of Fruit and Vegetable Waste Using TGA and DTG
4.5. Evaluation of Fruit and Vegetable Waste Using ATR-FTIR
4.6. Evaluation of Fruit and Vegetable Waste Using X-Ray Diffraction, SEM, and AFM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and Vegetable Waste Management: Conventional and Emerging Approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-Products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef] [PubMed]
- Pathania, S.; Kaur, N. Utilization of Fruits and Vegetable By-Products for Isolation of Dietary Fibres and Its Potential Application as Functional Ingredients. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Shurson, G.C.; Dierenfeld, E.S.; Dou, Z. Rules are meant to be broken—Rethinking the regulations on the use of food waste as animal feed. Resour. Conserv. Recycl. 2023, 199, 107273–107283. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-Processing of Agro-Byproducts to Animal Feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef]
- European Commission. COMMISSION REGULATION (EU) No 68/2013 of 16 January 2013 on the Catalogue of feed materials. Off. J. Eur. Union 2013, 29, 1–64. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:029:0001:0064:EN:PDF (accessed on 15 July 2024).
- European Commission. COMMISSION REGULATION (EU) 2017/1017 of 15 June 2017 amending Regulation (EU) No 68/2013 on the Catalogue of feed materials. Off. J. Eur. Union 2017, 159, 48–119. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1017 (accessed on 15 July 2024).
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef]
- Lee, K.; Malerba, F. Catch-up Cycles and Changes in Industrial Leadership:Windows of Opportunity and Responses of Firms and Countries in the Evolution of Sectoral Systems. Res. Policy 2017, 46, 338–351. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical Composition, Functional Properties and Processing of Carrot—A Review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Chang, K.C. Carrot Pulp Chemical Composition, Color, and Water-holding Capacity as Affected by Blanching. J. Food Sci. 1994, 59, 1159–1161. [Google Scholar] [CrossRef]
- Shyamala, B.N.; Jamuna, P. Nutritional Content and Antioxidant Properties of Pulp Waste from Daucus carota and Beta vulgaris. Malays. J. Nutr. 2010, 16, 397–408. [Google Scholar] [PubMed]
- Ikram, A.; Rasheed, A.; Ahmad Khan, A.; Khan, R.; Ahmad, M.; Bashir, R.; Hassan Mohamed, M. Exploring the Health Benefits and Utility of Carrots and Carrot Pomace: A Systematic Review. Int. J. Food Prop. 2024, 27, 180–193. [Google Scholar] [CrossRef]
- Hashem, N. The Use of Dried Carrot Processing Waste in Broiler Diets. J. Anim. Poult. Prod. 2012, 3, 423–435. [Google Scholar] [CrossRef]
- Vulić, J.J.; Ćebović, T.N.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Čanadanović, V.M.; Djilas, S.M.; Tumbas Šaponjac, V.T. In Vivo and in Vitro Antioxidant Effects of Beetroot Pomace Extracts. J. Funct. Foods 2014, 6, 168–175. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally Processed Beetroot Waste as an Alternative Source to Obtain Functional Ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Singh, A.; Ganesapillai, M.; Gnanasundaram, N. Optimizaton of Extraction of Betalain Pigments from Beta vulgaris Peels by Microwave Pretreatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032004. [Google Scholar] [CrossRef]
- Jasmin, K.J.; Somanath, B. Carrot Waste and Beetroot Waste Supplemented Diet Promoting Carotenoid Changes in Freshwater Goldfish C. auratus. Int. J. Life Sci. Res. 2016, 4, 105–113. [Google Scholar]
- Egüés, I.; Hernandez-Ramos, F.; Rivilla, I.; Labidi, J. Optimization of Ultrasound Assisted Extraction of Bioactive Compounds from Apple Pomace. Molecules 2021, 26, 3783. [Google Scholar] [CrossRef] [PubMed]
- Sepelev, I.; Galoburda, R. Industrial Potato Peel Waste Application in Food Production: A Review. Res. Rural Dev. 2015, 1, 130–136. [Google Scholar]
- Wu, Z.G.; Xu, H.Y.; Ma, Q.; Cao, Y.; Ma, J.N.; Ma, C.M. Isolation, Identification and Quantification of Unsaturated Fatty Acids, Amides, Phenolic Compounds and Glycoalkaloids from Potato Peel. Food Chem. 2012, 135, 2425–2429. [Google Scholar] [CrossRef] [PubMed]
- Ncobela, C.N.; Kanengoni, A.T.; Hlatini, V.A.; Thomas, R.S.; Chimonyo, M. A Review of the Utility of Potato By-Products as a Feed Resource for Smallholder Pig Production. Anim. Feed Sci. Technol. 2017, 227, 107–117. [Google Scholar] [CrossRef]
- Li, M.Y.; Hou, X.L.; Wang, F.; Tan, G.F.; Xu, Z.S.; Xiong, A.S. Advances in the Research of Celery, an Important Apiaceae Vegetable Crop. Crit. Rev. Biotechnol. 2018, 38, 172–183. [Google Scholar] [CrossRef]
- Aşkın Uzel, R. Sustainable Green Technology for Adaptation of Circular Economy to Valorize Agri-Food Waste: Celery Root Peel as a Case Study. Manag. Environ. Qual. Int. J. 2023, 34, 1018–1034. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Manda, G.; Motiu, M.; Neagoe, I.; Tabuc, C.; Stancu, M.; Olteanu, M. Assessment of the potential of a boron–fructose additive in counteracting the toxic effect of Fusarium mycotoxins. Br. J. Nutr. 2011, 106, 398–407. [Google Scholar] [CrossRef]
- ISO 16472:2006; Animal Feeding Stuffs—Determination of Amylase-Treated Neutral Detergent Fiber Content (aNDF). ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37898.html (accessed on 15 July 2024).
- ISO 13906:2008; Animal Feeding Stuffs—Determination of Acid Detergent Fiber (ADF) and Acid Detergent Lignin (ADL) CONTENTS. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/43032.html (accessed on 15 July 2024).
- Anzano, J.M.; Perise, E.; Belarra, M.A.; Castillo, J.R. Determination of Calcium and Copper in Feedstuffs by Atomic Absorption Spectrometry Following a Digestion Procedure with H2SO4 + H2O2. Microchem. J. 1995, 52, 268–273. [Google Scholar] [CrossRef]
- ISO 7485:2000; Animal Feeding Stuffs—Determination of Potassium and Sodium Contents—Methods Using Flame-Emission Spectrometry. ISO: Geneva, Switzerland, 2000. Available online: https://www.iso.org/standard/32070.html (accessed on 15 July 2024).
- COMMISSION REGULATION (EC) No 152/2009 of 27 January 2009, Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32009R0152 (accessed on 22 July 2024).
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous Determination of Glucose, Fructose, Sucrose and Sorbitol in the Leaf and Fruit Peel of Different Apple Cultivars by the HPLC-RI Optimized Method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef]
- Filip, M.; Moldovan, M.; Vlassa, M.; Sarosi, C.; Cojocaru, I. HPLC Determination of the Main Organic Acids in Teeth Bleaching Gels Prepared with the Natural Fruit Juices. Rev. Chim. 2016, 67, 2440–2445. [Google Scholar]
- Filip, M.; Silaghi-Dumitrescu, L.; Prodan, D.; Codruţa, S.; Moldovan, M.; Cojocaru, I. Analytical Approaches for Characterization of Teeth Whitening Gels Based on Natural Extracts. Key Eng. Mater. 2017, 752 KEM, 24–28. [Google Scholar] [CrossRef]
- Vlassa, M.; Filip, M.; Țăranu, I.; Marin, D.; Untea, A.E.; Ropotă, M.; Dragomir, C.; Sărăcilă, M. The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods 2022, 11, 2972. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, D.; Turemko, M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC–DAD–MS/MS. Antioxidants 2020, 9, 1054. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Tuszyński, T. Antioxidant Activity of Apples—An Impact of Maturity Stage and Fruit Part. Acta Sci. Pol. Technol. Aliment. 2011, 10, 443–454. [Google Scholar] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Powder Pattern Indexing with the Dichotomy Method. J. Appl. Crystallogr. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Canteri, M.H.G.; Renard, C.M.G.C.; Le Bourvellec, C.; Bureau, S. ATR-FTIR Spectroscopy to Determine Cell Wall Composition: Application on a Large Diversity of Fruits and Vegetables. Carbohydr. Polym. 2019, 212, 186–196. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Colina, M.; Rodriguez, J.; Ptitchkina, N.M.; Ignatov, V.V. Comparative Spectroscopic Characterization of Different Pectins and Their Sources. Food Hydrocoll. 1998, 12, 263–271. [Google Scholar] [CrossRef]
- Liang, S.; McDonald, A.G. Chemical and Thermal Characterization of Potato Peel Waste and Its Fermentation Residue as Potential Resources for Biofuel and Bioproducts Production. J. Agric. Food Chem. 2014, 62, 8421–8429. [Google Scholar] [CrossRef]
- Muhammad, K.; Nur, N.I.; Gannasin, S.P.; Adzahan, N.M.; Bakar, J. High Methoxyl Pectin from Dragon Fruit (Hylocereus polyrhizus) Peel. Food Hydrocoll. 2014, 42, 289–297. [Google Scholar] [CrossRef]
- Zlatanović, S.; Ostojić, S.; Micić, D.; Rankov, S.; Dodevska, M.; Vukosavljević, P.; Gorjanović, S. Thermal Behaviour and Degradation Kinetics of Apple Pomace Flours. Thermochim. Acta 2019, 673, 17–25. [Google Scholar] [CrossRef]
- Fan, M.; Dai, D.; Huang, B. Fourier Transform Infrared Spectroscopy for Natural Fibres. In Fourier Transform; Salih, S.M., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Šoštarić, T.; Simić, M.; Lopičić, Z.; Zlatanović, S.; Pastor, F.; Antanasković, A.; Gorjanović, S. Food Waste (Beetroot and Apple Pomace) as Sorbent for Lead from Aqueous Solutions—Alternative to Landfill Disposal. Processes 2023, 11, 1343. [Google Scholar] [CrossRef]
- Singh, L.; Kaur, S.; Aggarwal, P.; Kaur, N. Characterisation of Industrial Potato Waste for Suitability in Food Applications. Int. J. Food Sci. Technol. 2023, 58, 2686–2694. [Google Scholar] [CrossRef]
- Boadi, N.O.; Badu, M.; Kortei, N.K.; Saah, S.A.; Annor, B.; Mensah, M.B.; Okyere, H.; Fiebor, A. Nutritional Composition and Antioxidant Properties of Three Varieties of Carrot (Daucus carota). Sci. Afr. 2021, 12, e00801. [Google Scholar] [CrossRef]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Taranu, I.; Filip, M.; Vlassa, M.C.; Marin, D.; Untea, A.; Oancea, A.; Pertea, A.M. Assessing Comparatively The Bioactive Compounds Composition Of Apple Pomace Obtained From Three Apple Cultivars After Juice Extraction. Anim. Food Sci. J. Iasi 2023, 80, 29–38. [Google Scholar]
- Luca, M.I.; Ungureanu-Iuga, M.; Mironeasa, S. Carrot Pomace Characterization for Application in Cereal-Based Products. Appl. Sci. 2022, 12, 7989. [Google Scholar] [CrossRef]
- Rupérez, P.; Toledano, G. Celery By-Products as a Source of Mannitol. Eur. Food Res. Technol. 2003, 216, 224–226. [Google Scholar] [CrossRef]
- Bouhlali, E.d.T.; Derouich, M.; Meziani, R.; Bourkhis, B.; Filali-Zegzouti, Y.; Alem, C. Nutritional, Mineral and Organic Acid Composition of Syrups Produced from Six Moroccan Date Fruit (Phoenix dactylifera L.) Varieties. J. Food Compos. Anal. 2020, 93, 103591. [Google Scholar] [CrossRef]
- Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M.; Hameed, A. Potato Peel Waste—Its Nutraceutical, Industrial and Biotechnological Applacations. AIMS Agric. Food 2019, 4, 807–823. [Google Scholar] [CrossRef]
- Abdo, E.M.; Allam, M.G.; Gomaa, M.A.E.; Shaltout, O.E.; Mansour, H.M.M. Valorization of Whey Proteins and Beetroot Peels to Develop a Functional Beverage High in Proteins and Antioxidants. Front. Nutr. 2022, 9, 984891. [Google Scholar] [CrossRef] [PubMed]
- Pistol, G.C.; Pertea, A.M.; Taranu, I. The Use of Fruit and Vegetable By-Products as Enhancers of Health Status of Piglets after Weaning: The Role of Bioactive Compounds from Apple and Carrot Industrial Wastes. Vet. Sci. 2024, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Nićetin, M.; Pezo, L.; Pergal, M.; Lončar, B.; Filipović, V.; Knežević, V.; Demir, H.; Filipović, J.; Manojlović, D. Celery Root Phenols Content, Antioxidant Capacities and Their Correlations after Osmotic Dehydration in Molasses. Foods 2022, 11, 1945. [Google Scholar] [CrossRef] [PubMed]
- Priecina, L.; Karklina, D. Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 492–496. [Google Scholar]
- Golubkina, N.A.; Kharchenko, V.A.; Moldovan, A.I.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere. Plants 2020, 9, 484. [Google Scholar] [CrossRef]
- Lončarić, A.; Matanović, K.; Ferrer, P.; Kovač, T.; Šarkanj, B.; Babojelić, M.S.; Lores, M. Peel of Traditional Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion. Foods 2020, 9, 80. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain Profile, Content and Antioxidant Capacity of Red Beetroot Dependent on the Genotype and Root Part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Lau, W.K.; Van Chuyen, H.; Vuong, Q.V. Physical Properties, Carotenoids and Antioxidant Capacity of Carrot (Daucus carota L.) Peel as Influenced by Different Drying Treatments. Int. J. Food Eng. 2018, 14, 20170042. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Michailidis, Z.; Pantelidis, G. Peel and Flesh Antioxidant Content and Harvest Quality Characteristics of Seven Apple Cultivars. Sci. Hortic. 2008, 115, 149–153. [Google Scholar] [CrossRef]
- Sehm, J.; Lindermayer, H.; Dummer, C.; Treutter, D.; Pfaffl, M.W. The influence of polyphenol rich apple pomace or red-wine pomace diet on the gut morphology in weaning piglets. J. Anim. Physiol. Anim. Nutr. 2007, 91, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.R.B.; Marques Da Silva Paula, M.; Zaragoza, M.M.; Gutiérrez, J.S.; Velderrain, V.G.; Ortiz, A.L.; Collins-Martínez, V. Thermogravimetric Study on the Pyrolysis Kinetics of Apple Pomace as Waste Biomass. Int. J. Hydrogen Energy 2014, 39, 16619–16627. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A.K. Physicochemical Analysis of Apple and Grape Pomaces. BioResources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- Munir, S.; Daood, S.S.; Nimmo, W.; Cunliffe, A.M.; Gibbs, B.M. Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal under Nitrogen and Air Atmospheres. Bioresour. Technol. 2009, 100, 1413–1418. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; Elhassan, O.; Mansour, S.; McKay, G. Biochar Development from Thermal TGA Studies of Individual Food Waste Vegetables and Their Blended Systems. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Khosrowshahi, M.S.; Mashhadimoslem, H.; Emrooz, H.B.M.; Ghaemi, A.; Hosseini, M.S. Green Self-Activating Synthesis System for Porous Carbons: Celery Biomass Wastes as a Typical Case for CO2 Uptake with Kinetic, Equilibrium and Thermodynamic Studies. Diam. Relat. Mater. 2022, 127, 109204. [Google Scholar] [CrossRef]
- Mujtaba, G.; Hayat, R.; Hussain, Q.; Ahmed, M. Physio-chemical Characterization of Biochar, Compost and Co-composted Biochar Derived from Green Waste. Sustainability 2021, 13, 4628. [Google Scholar] [CrossRef]
- Anukriti; Singh, N.; Upadhyay, D. XRD and SEM, ED Analysis of Solar Dried Vegetables. Asian Food Sci. J. 2022, 21, 25–37. [Google Scholar] [CrossRef]
- Yi, S.; Lv, K.; Zhang, S.; Wang, W.; Li, X.; Li, J. Gel Quality and in Vitro Digestion Characteristics of Celery Nemipterus Virgatus Fish Sausages. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012074. [Google Scholar] [CrossRef]
- Imaizumi, T.; Szymańska-Chargot, M.; Pieczywek, P.M.; Chylińska, M.; Kozioł, A.; Ganczarenko, D.; Tanaka, F.; Uchino, T.; Zdunek, A. Evaluation of Pectin Nanostructure by Atomic Force Microscopy in Blanched Carrot. LWT 2017, 84, 658–667. [Google Scholar] [CrossRef]
Chemical Composition (%) | Golden Apples | Red Apples | Carrots | Celery | Beetroots | Red Potato Peels |
---|---|---|---|---|---|---|
DM (65 °C) | 18.56 ± 0.17 | 19.30 ± 0.16 | 11.85 ± 0.11 | 12.10 ± 0.12 | 13.94 ± 0.14 | 15.67 ± 0.14 |
DM (103 °C) | 95.04 ± 0.13 | 89.86 ± 0.19 | 93.19 ± 0.15 | 95.00 ± 0.11 | 94.18 ± 0.11 | 95.72 ± 0.11 |
CP | 2.43 ± 0.09 | 2.45 ± 0.06 | 5.79 ± 0.06 | 6.97 ± 0.08 | 16.08 ± 0.07 | 15.58 ± 0.08 |
CF | 0.76 ± 0.04 | 1.16 ± 0.03 | 0.14 ± 0.015 | 0.52 ± 0.03 | 0.29 ± 0.02 | 0.12 ± 0.01 |
CA | 1.48 ± 0.07 | 1.75 ± 0.08 | 6.45 ± 0.08 | 10.38 ± 0.17 | 9.61 ± 0.07 | 5.79 ± 0.08 |
NDFs | 22.42 ± 0.28 | 19.85 ± 0.10 | 14.19 ± 0.16 | 18.85 ± 0.12 | 33.15 ± 0.19 | 46.29 ± 0.16 |
ADFs | 13.89 ± 0.16 | 14.90 ± 0.15 | 10.74 ± 0.18 | 14.96 ± 0.16 | 14.00 ± 0.26 | 10.72 ± 0.22 |
CC | 14.49 ± 0.15 | 13.09 ± 0.13 | 8.83 ± 0.12 | 11.87 ± 0.23 | 13.07 ± 0.16 | 6.85 ± 0.24 |
Waste | Ca | P | Mg | Na | K | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | ppm | ppm | % | % | |
Golden apples | 0.04 ± 0.002 | 0.11 ± 0.004 | 0.06 ± 0.002 | 0.008 ± 0.0004 | 0.75 ± 0.037 | 3.73 ± 0.186 | 26.09 ± 1.043 | 6.07 ± 0.303 | 3.46 ± 0.138 |
Red apples | 0.38 ± 0.019 | 0.11 ± 0.004 | 0.105 ± 0.005 | 0.006 ± 0.0003 | 1.216 ± 0.061 | 5.660 ± 0.283 | 34.910 ± 1.746 | 5.06 ± 0.253 | 19.01 ± 0.951 |
Carrots | 0.32 ± 0.013 | 0.31 ± 0.012 | 0.117 ± 0.005 | 0.529 ± 0.021 | 2.66 ± 0.106 | 4.16 ± 0.166 | 25.97 ± 1.039 | 10.18 ± 0.407 | 14.60 ± 0.584 |
Celery | 0.48 ± 0.024 | 0.55 ± 0.028 | 0.122 ± 0.006 | 0.602 ± 0.030 | 4.003 ± 0.200 | 10.48 ± 0.419 | 116.40 ± 0.058 | 21.19 ± 0.848 | 40.25 ± 2.013 |
Beetroots | 0.12 ± 0.006 | 0.38 ± 0.019 | 0.139± | 0.367 ± 0.007 | 4.502 ± 0.225 | 10.08 ± 0.403 | 55.65 ± 2.226 | 16.59 ± 0.664 | 33.05 ± 1.322 |
Red potato peels | 0.08 ± 0.005 | 0.33 ± 0.165 | 0.081 ± 0.004 | 0.027 ± 0.001 | 3.392 ± 0.169 | 8.79 ± 0.439 | 249.40 ± 9.976 | 13.66 ± 0.546 | 21.44 ± 0.858 |
Golden Apples | Red Apples | Carrots | Celery | Beetroots | Red Potato Peels | |
---|---|---|---|---|---|---|
TPC | 6.69 ± 0.03 | 10.64 ± 0.12 | 4.69 ± 0.06 | 3.72 ± 0.02 | 15.51 ± 0.24 | 7.75 ± 0.14 |
DPPH | 2066.28 ± 10.63 | 4075.81 ± 8.49 | 1438.91 ± 8.13 | 516.60 ± 4.16 | 6622.28 ± 35.31 | 2046.02 ± 13.82 |
ABTS | 1941.81 ± 7.32 | 3852.48 ± 16.59 | 1838.29 ± 12.52 | 1443.91 ± 9.90 | 7334.98 ± 33.22 | 3669.92 ± 11.30 |
Sample | Tmin | Ml I | T1 | Ml II | T2 | Ml III | T3 | Ml IV | Tmax | TMl |
---|---|---|---|---|---|---|---|---|---|---|
°C | % | °C | % | °C | % | °C | % | °C | % | |
Golden apples | 53.79 | 2.77 | 199.93 | 37.43 | 328.00 | 38.91 | 1189.97 | 15.22 | 1200 | 94.11 |
Red apples | 49.52 | 3.85 | 196.1 | 37.22 | 321.93 | 37.09 | 1144.79 | 11.97 | 1200 | 89.69 |
Carrots | 52.44 | 4.32 | 196.96 | 39.26 | 295.89 | 27.28 | 960.08 | 24.27 | 1200 | 95.64 |
Celery | 57.55 | 4.61 | 197.18 | 24.17 | 286.38 | 44.00 | 962.75 | 20.43 | 1200 | 96.57 |
Beetroots | 56.15 | 4.09 | 201.27 | 39.23 | 296.91 | 27.89 | 919.10 | 25.96 | 1200 | 92.84 |
Red potato peels | 56.76 | 5.87 | - | - | 286.43 | 64.66 | 928.41 | 18.79 | 1200 | 89.28 |
Golden Apples | Red Apples | Carrots | Celery | Beetroots | Red Potato Peels | Assignment of Vibration Bands | References |
---|---|---|---|---|---|---|---|
Wavenumber [cm−1] | |||||||
- | - | 3735 | 3735; 3649 | 3735 | 3735; 3649 | O-H group stretching from alcohols, which are abundant in polysaccharides. | [41,42] |
3294 | 3292 | 3275 | 3290 | 3290 | 3275 | O-H group stretching and bending from cellulose or pectins. | [41] |
2922 | 2924 | 2922 | 2924 | 2922 | 2925 | CH3, CH2, or -CH=CH- aliphatic group asymmetric and symmetric stretching; trans -CH=CH- of beta-carotene and pectins. | [41] |
1734 | 1734 | 1734 | 1734 | 1734 | 1747 | C-O in acetyl group and uranic ester group stretching, or ester groups present in the carboxylic group of ferulic and p-coumaric acids of lignin and/or hemicellulose and pectins. | [41] |
1614 | 1616 | 1601 | 1606 | 1616 | 1635 | C=O esters from free carboxyl groups (acids); C-O stretching of aryl group present in lignin. | [43] |
1417 | 1417 | 1417 | - | 1541 | 1541 | C=C vibration of the aromatic ring. | [44] |
1338 | 1338 | 1338 | 1317 | 1396 | 1396 | CH3 and CH2 aliphatic groups. | [44] |
1236 | 1240 | 1244 | 1234 | 1244 | 1242 | C-OH, C-O-C, C-C, C-O, and C=O stretching in sugars, alcohols, and ethers. | [45,46,47] |
1024 | 1022 | 1028 | 1011 | 1036; 989 | 1012 | C-O bond deformation vibrations in secondary alcohols and aliphatic ethers; C-C, C-OH, C-H ring, and side group vibrations; C-O-C stretching of galacturonic acid, starch, cellulose, and phenols. | [44] |
866 | 868 | - | - | 926 | 856 | C-O out-of-plane band. | [48] |
818–777 | 818–777 | - | - | - | - | C-H, C-C, C-OH, COC, CCO, CCH, and N-H bond deformation and stretching vibrations associated with aromatic rings, carbohydrates, and lignin. | [44] |
557 | 580 | 567 | 568 | 568 | 565 | C-O-O and P-O-C group bending in aromatic phosphates. | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filip, M.; Vlassa, M.; Petean, I.; Țăranu, I.; Marin, D.; Perhaiță, I.; Prodan, D.; Borodi, G.; Dragomir, C. Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications. Agriculture 2024, 14, 2038. https://doi.org/10.3390/agriculture14112038
Filip M, Vlassa M, Petean I, Țăranu I, Marin D, Perhaiță I, Prodan D, Borodi G, Dragomir C. Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications. Agriculture. 2024; 14(11):2038. https://doi.org/10.3390/agriculture14112038
Chicago/Turabian StyleFilip, Miuța, Mihaela Vlassa, Ioan Petean, Ionelia Țăranu, Daniela Marin, Ioana Perhaiță, Doina Prodan, Gheorghe Borodi, and Cătălin Dragomir. 2024. "Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications" Agriculture 14, no. 11: 2038. https://doi.org/10.3390/agriculture14112038
APA StyleFilip, M., Vlassa, M., Petean, I., Țăranu, I., Marin, D., Perhaiță, I., Prodan, D., Borodi, G., & Dragomir, C. (2024). Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications. Agriculture, 14(11), 2038. https://doi.org/10.3390/agriculture14112038