Detecting Botrytis Cinerea Control Efficacy via Deep Learning
Abstract
:1. Introduction
- Propose an efficient deep learning-based method for monitoring Botrytis cinerea growth and evaluating prevention effectiveness. This method achieves real-time prediction of Botrytis cinerea colony area by fusing colony growth environmental data and images as network input, providing a quantitative basis for assessing prevention effectiveness.
- Integrate channel attention mechanism and multi-head self-attention mechanism into the RepVGG network, combined with a multi-scale feature extractor, further improving the accuracy of colony growth area prediction and laying a solid foundation for subsequent quantitative analysis of prevention effectiveness.
- Introduce the Shapley value from game theory to achieve a precise quantitative analysis of the contribution of various environmental variables to Botrytis cinerea growth.
2. Related Work
3. Materials and Methods
3.1. Experimental Materials
3.1.1. Data Collection
- A base module (Module 1).
- A colony cultivation observation module (Module 2).
- An image acquisition module (Module 3).
- A data processing module (Module 4).
- The light incubator employs the MCD-B3G model from Shanghai Minquan Instruments Co., Ltd., Shanghai, China.
- The biochemical cultivation device utilizes the SPX-150-II model from Shanghai Yuejin Medical Equipment Co., Ltd., Shanghai, China.
- The clean bench implements the SW-CJ-2FD model from Suzhou Antai Air Technology Co., Ltd., Suzhou, China.
- The temperature sensor employs the Jianda Renke COS-03 model with a measurement precision of 0.1 °C.
3.1.2. Data Preprocessing
3.2. Proposed Method
3.2.1. Model Design
3.2.2. Colony Area Calculation Method
3.2.3. Prevention Effectiveness Analysis Method
4. Results
4.1. Experimental Environment
- The number of training epochs is 200, batch_size = 32.
- Output results are displayed once every 20 training iterations.
- The learning rate of the Adam optimizer is set to 0.000001.
4.2. Evaluation Metrics
4.3. Experimental Results
4.4. Model Prevention Effectiveness Analysis Results
5. Discussion
5.1. Ablation Analysis
- (1)
- Network structure variants: different structures from RepVGG_A0 to B2 [37] were adopted to explore the impact of network depth and complexity on performance.
- (2)
- (1)
- The B1 structure performed best, with an average training absolute error close to 0.012, showing high prediction accuracy.
- (2)
- The A0 and A2 structures had similar training effects.
- (3)
- Other network variants showed significant performance differences.
5.2. Model Performance Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Z.; Liu, J.; Zhao, H.; Chu, X.; Liu, H.; Ding, X.; Lu, C.; Wang, X.; Zhao, X.; Li, Y. SlMYB1 regulates the accumulation of lycopene, fruit shape, and resistance to Botrytis cinerea in tomato. Hortic. Res. 2023, 10, uhac282. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-C.; Li, L.-C.; Cai, B.; Cai, L.-T.; Chen, X.-J.; Yu, Z.-H.; Zhang, C.-Q. Metabolic phenotype characterization of Botrytis cinerea, the causal agent of gray mold. Front. Microbiol. 2018, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; Liang, Y.; Mengiste, T.; Sharon, A. Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci. 2023, 28, 211–222. [Google Scholar] [CrossRef]
- Breia, R.; Conde, A.; Badim, H.; Fortes, A.M.; Gerós, H.; Granell, A. Plant SWEETs: From sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol. 2021, 186, 836–852. [Google Scholar] [CrossRef]
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 2013, 61, 5189–5206. [Google Scholar] [CrossRef]
- Mincuzzi, A.; Ippolito, A. Pomegranate: Postharvest Fungal Diseases and Control; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Chen, X.; Liu, Y.; Gong, Y.; Yuan, G.; Liu, J.; Chen, L. Defense and inhibition integrated mesoporous nanoselenium delivery system against tomato gray mold. Environ. Sci. Nano 2020, 7, 210–227. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Walker, R.P.; Castellarin, S.D.; Sweetman, C.; Burbidge, C.A.; Bonghi, C.; Famiani, F.; Darriet, P. Modifications of grapevine berry composition induced by main viral and fungal pathogens in a climate change scenario. Front. Plant Sci. 2021, 12, 717223. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, S.; Singh, M.; Singh, A.; Singh, A. Important diseases of greenhouse crops and their integrated management: A review. J. Entomol. Zool. Stud. 2020, 8, 962–970. [Google Scholar]
- Anyansi, C.; Straub, T.J.; Manson, A.L.; Earl, A.M.; Abeel, T. Computational methods for strain-level microbial detection in colony and metagenome sequencing data. Front. Microbiol. 2020, 11, 1925. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4612–4651. [Google Scholar] [CrossRef]
- Iqbal, T.; Qureshi, S. The survey: Text generation models in deep learning. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 2515–2528. [Google Scholar] [CrossRef]
- Xiaolin, X.; Xiaozhi, L.; Guoping, H.; Hongwei, L.; Jinkuo, G.; Xiyun, B.; Zhen, T.; Xiaofang, M.; Yanxia, L.; Na, X. Overfit deep neural network for predicting drug-target interactions. iScience 2023, 26, 107646. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, X.; Liu, S.; Lu, H.; Jiang, R.; Guo, W.; Chapman, S.; Ge, Y.; Solan, B.; Ding, Y. Self-supervised plant phenotyping by combining domain adaptation with 3D plant model simulations: Application to wheat leaf counting at seedling stage. Plant Phenomics 2023, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Wani, J.A.; Sharma, S.; Muzamil, M.; Ahmed, S.; Sharma, S.; Singh, S. Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges. Arch. Comput. Methods Eng. 2022, 29, 641–677. [Google Scholar] [CrossRef]
- Sai Reddy, B.; Neeraja, S. Plant leaf disease classification and damage detection system using deep learning models. Multimed. Tools Appl. 2022, 81, 24021–24040. [Google Scholar] [CrossRef]
- Chug, A.; Bhatia, A.; Singh, A.P.; Singh, D. A novel framework for image-based plant disease detection using hybrid deep learning approach. Soft Comput. 2023, 27, 13613–13638. [Google Scholar] [CrossRef]
- Shoaib, M.; Hussain, T.; Shah, B.; Ullah, I.; Shah, S.M.; Ali, F.; Park, S.H. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 2022, 13, 1031748. [Google Scholar] [CrossRef]
- Anandhakrishnan, T.; Jaisakthi, S. Deep Convolutional Neural Networks for image based tomato leaf disease detection. Sustain. Chem. Pharm. 2022, 30, 100793. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Zhao, Y.; Zhu, S.; Liu, F.; He, Y. Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods. Chemom. Intell. Lab. Syst. 2020, 203, 104063. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Sci. Rep. 2017, 7, 4125. [Google Scholar] [CrossRef] [PubMed]
- Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayak, S.C.; Verma, S.; Ijaz, M.F.; Woźniak, M. IoT and interpretable machine learning based framework for disease prediction in pearl millet. Sensors 2021, 21, 5386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, J.; Wu, S. Multiple disease detection method for greenhouse-cultivated strawberry based on multiscale feature fusion Faster R_CNN. Comput. Electron. Agric. 2022, 199, 107176. [Google Scholar] [CrossRef]
- Ale, L.; Sheta, A.; Li, L.; Wang, Y.; Zhang, N. Deep learning based plant disease detection for smart agriculture. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, J.; Li, Z.; Qi, F. Grape disease image classification based on lightweight convolution neural networks and channelwise attention. Comput. Electron. Agric. 2020, 178, 105735. [Google Scholar] [CrossRef]
- Guo, Y.; Lan, Y.; Chen, X. CST: Convolutional Swin Transformer for detecting the degree and types of plant diseases. Comput. Electron. Agric. 2022, 202, 107407. [Google Scholar] [CrossRef]
- Sutaji, D.; Yıldız, O. LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease. Ecol. Inform. 2022, 70, 101698. [Google Scholar] [CrossRef]
- Jin, H.; Li, Y.; Qi, J.; Feng, J.; Tian, D.; Mu, W. GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition. Comput. Electron. Agric. 2022, 198, 107055. [Google Scholar] [CrossRef]
- Li, M.; Zhou, G.; Chen, A.; Yi, J.; Lu, C.; He, M.; Hu, Y. FWDGAN-based data augmentation for tomato leaf disease identification. Comput. Electron. Agric. 2022, 194, 106779. [Google Scholar] [CrossRef]
- Fan, X.; Luo, P.; Mu, Y.; Zhou, R.; Tjahjadi, T.; Ren, Y. Leaf image based plant disease identification using transfer learning and feature fusion. Comput. Electron. Agric. 2022, 196, 106892. [Google Scholar] [CrossRef]
- Yi, W.; Zhang, L.; Xu, Y.; Cheng, X.; Chen, T. MIDF-DMAP: Multimodal information dynamic fusion for drug molecule activity prediction. Expert Syst. Appl. 2025, 260, 125403. [Google Scholar] [CrossRef]
- Yi, W.; Xia, S.; Kuzmin, S.; Gerasimov, I.; Cheng, X. YOLOv7-KDT: An ensemble model for pomelo counting in complex environment. Comput. Electron. Agric. 2024, 227, 109469. [Google Scholar] [CrossRef]
- Yi, W.; Zhang, X.; Dai, S.; Kuzmin, S.; Gerasimov, I.; Cheng, X. MV-SSRP: Machine Vision Approach for Stress–Strain Measurement in Rice Plants. Agronomy 2024, 14, 1443. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar] [CrossRef]
- Zheng, J.; Li, K.; Wu, W.; Ruan, H. RepDI: A light-weight CPU network for apple leaf disease identification. Comput. Electron. Agric. 2023, 212, 108122. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Zhao, X.; Li, K.; Li, Y.; Ma, J.; Zhang, L. Identification method of vegetable diseases based on transfer learning and attention mechanism. Comput. Electron. Agric. 2022, 193, 106703. [Google Scholar] [CrossRef]
- Li, G.; Jiao, L.; Chen, P.; Liu, K.; Wang, R.; Dong, S.; Kang, C. Spatial convolutional self-attention-based transformer module for strawberry disease identification under complex background. Comput. Electron. Agric. 2023, 212, 108121. [Google Scholar] [CrossRef]
- Thakur, P.S.; Chaturvedi, S.; Khanna, P.; Sheorey, T.; Ojha, A. Vision transformer meets convolutional neural network for plant disease classification. Ecol. Inform. 2023, 77, 102245. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Li, X.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar] [CrossRef]
- Winter, E. The shapley value. In Handbook of Game Theory with Economic Applications; Elsevier: Amsterdam, The Netherlands, 2002; Volume 3, pp. 2025–2054. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Giakoumoglou, N.; Kalogeropoulou, E.; Klaridopoulos, C.; Pechlivani, E.M.; Christakakis, P.; Markellou, E.; Frangakis, N.; Tzovaras, D. Early detection of Botrytis cinerea symptoms using deep learning multi-spectral image segmentation. Smart Agric. Technol. 2024, 8, 100481. [Google Scholar] [CrossRef]
- Meng, L.; Audenaert, K.; Van Labeke, M.-C.; Höfte, M. Detection of Botrytis cinerea on strawberry leaves upon mycelial infection through imaging technique. Sci. Hortic. 2024, 330, 113071. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, W.; Zhang, X.; Dai, S.; Kuzmin, S.; Gerasimov, I.; Cheng, X. Detecting Botrytis Cinerea Control Efficacy via Deep Learning. Agriculture 2024, 14, 2054. https://doi.org/10.3390/agriculture14112054
Yi W, Zhang X, Dai S, Kuzmin S, Gerasimov I, Cheng X. Detecting Botrytis Cinerea Control Efficacy via Deep Learning. Agriculture. 2024; 14(11):2054. https://doi.org/10.3390/agriculture14112054
Chicago/Turabian StyleYi, Wenlong, Xunsheng Zhang, Shiming Dai, Sergey Kuzmin, Igor Gerasimov, and Xiangping Cheng. 2024. "Detecting Botrytis Cinerea Control Efficacy via Deep Learning" Agriculture 14, no. 11: 2054. https://doi.org/10.3390/agriculture14112054
APA StyleYi, W., Zhang, X., Dai, S., Kuzmin, S., Gerasimov, I., & Cheng, X. (2024). Detecting Botrytis Cinerea Control Efficacy via Deep Learning. Agriculture, 14(11), 2054. https://doi.org/10.3390/agriculture14112054