Improved Cd Detection in Rice Grain Using LIBS with Husk-Based XGBoost Transfer Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sample Preparation and Data Preprocessing
2.3. Transfer Learning Based on XGBoost
3. Conclusions and Analysis
3.1. LIBS Spectral Analysis of Rice Husk, Brown Rice and Polished Rice
3.2. XGBoost Base Model and XGBoost-Based Transfer Learning Model for Quantitative Analysis of Cd in Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.; Yang, Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Shen, R.F.; Shao, J.F. Transport of cadmium from soil to grain in cereal crops: A review. Pedosphere 2021, 31, 3–10. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Hu, H.; Shaheen, S.M.; Zhong, H.; Tack, F.M.G.; Wu, M.; Li, Y.-F.; Gao, Y.; Rinklebe, J.; et al. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environ. Int. 2021, 156, 106749. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Niklinski, J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Chen, C.; Kou, M.; Liu, Z.; Wang, Z.; Cai, J.; Tan, W. Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health. Commun. Earth Environ. 2023, 4, 84. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen, M.; Abedin, K.M.; Haider, A.F.M.Y.; Galić, N. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J. Spectrosc. 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, L.; Wang, Y.; Xiong, Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. Adv Sci (Weinh) 2024, 11, e2300668. [Google Scholar] [CrossRef]
- Ye, M.; Zhu, L.; Li, X.; Ke, Y.; Huang, Y.; Chen, B.; Yu, H.; Li, H.; Feng, H. Estimation of the soil arsenic concentration using a geographically weighted XGBoost model based on hyperspectral data. Sci. Total Environ. 2023, 858, 159798. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Pedarnig, J.D.; Trautner, S.; Grünberger, S.; Giannakaris, N.; Eschlböck-Fuchs, S.; Hofstadler, J. Review of Element Analysis of Industrial Materials by In-Line Laser—Induced Breakdown Spectroscopy (LIBS). Appl. Sci. 2021, 11, 9274. [Google Scholar] [CrossRef]
- Velásquez-Ferrín, A.; Babos, D.V.; Marina-Montes, C.; Anzano, J. Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis. Appl. Spectrosc. Rev. 2020, 56, 492–512. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B. Laser-induced breakdown spectroscopy for human and animal health: A review. Spectrochim. Acta Part. B At. Spectrosc. 2019, 152, 123–148. [Google Scholar] [CrossRef]
- Guo, L.-B.; Zhang, D.; Sun, L.-X.; Yao, S.-C.; Zhang, L.; Wang, Z.-Z.; Wang, Q.-Q.; Ding, H.-B.; Lu, Y.; Hou, Z.-Y.; et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys. 2021, 16, 1–25. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, R.; Zhang, W.; Yi, R.; Tang, S.; Guo, L.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chem. 2019, 272, 323–328. [Google Scholar] [CrossRef]
- Fu, G.; Hu, W.; Xie, W.; Yao, X.; Xu, J.; Yang, P.; Yao, M. Quantitative analysis of Cd based on the stress effect of minerals in rice by laser-induced breakdown spectroscopy. Anal. Methods 2023, 15, 5867–5874. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. In Proceedings of the Institute of Electrical and Electronics Engineers, Bari, Italy, 7–10 September 2021; Volume 109, pp. 43–76. [Google Scholar] [CrossRef]
- Shen, H.; Geng, Y.; Ni, H.; Wang, H.; Wu, J.; Hao, X.; Tie, J.; Luo, Y.; Xu, T.; Chen, Y.; et al. Across different instruments about tobacco quantitative analysis model of NIR spectroscopy based on transfer learning. RSC Adv. 2022, 12, 32641–32651. [Google Scholar] [CrossRef]
- Suarin, N.A.S.; Chia, K.S.; Mohamad Fuzi, S.F.Z. Transfer learning in near infrared spectroscopy for stingless bee honey quality prediction across different months. Knowl-Based Syst. 2024, 295, 111817. [Google Scholar] [CrossRef]
- Lin, P.; Wen, X.; Ma, S.; Liu, X.; Xiao, R.; Gu, Y.; Chen, G.; Han, Y.; Dong, D. Rapid identification of the geographical origins of crops using laser-induced breakdown spectroscopy combined with transfer learning. Spectrochim. Acta Part B At. Spectrosc. 2023, 206, 106729. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, E.M.; Lee, Y.R.; Park, K.S. Study of the Transition Pattern of Heavy Metal Absorption in a Rice-Related Matrix. Anal. Lett. 2021, 54, 2171–2181. [Google Scholar] [CrossRef]
- Singh, R.; Patel, M. Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass Bioenergy 2022, 159, 106411. [Google Scholar] [CrossRef]
- Gao, W.; Jiang, Q.; Guan, Y.; Huang, H.; Liu, S.; Ling, S.; Zhou, L. Transfer learning improves predictions in lignin content of Chinese fir based on Raman spectra. Int. J. Biol. Macromol. 2024, 269, 132147. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Bui, X.-N.; Bui, H.-B.; Cuong, D.T. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study. Acta Geophys. 2019, 67, 477–490. [Google Scholar] [CrossRef]
- Maleki, A.; Raahemi, M.; Nasiri, H. Breast cancer diagnosis from histopathology images using deep neural network and XGBoost. Biomed. Signal Process. Control 2023, 86, 105152. [Google Scholar] [CrossRef]
- Tymoteusz, M.; Kozlovska, P.; Krzemińska, A.; Lewita, K.; Biedrzycka, J.; Geroch, K. Xgboost in Environmental Ecology: A Powerful Tool for Sustainable Insights. Grail Sci. 2023, 34, 163–170. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Q.; Xia, Z.; Li, Z.; Qu, H. Application of XGBoost Algorithm in The Detection of SARS-CoV-2 Using Raman Spectroscopy. J. Phys. Conf. Ser. 2021, 1775, 012007. [Google Scholar] [CrossRef]
- Yang, P.; Fu, G.; Wang, J.; Luo, Z.; Yao, M. A tutorial review on methods of agricultural product sample pretreatment and target analysis by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2022, 37, 1948–1960. [Google Scholar] [CrossRef]
- GB/T 35876-2018; National Health and Family Planning Commission of the People’s Republic of China; China Food and Drug Administration. Inspection of Grain and Oils-Determination of Sodium, Magnesium, Kalium, Calcium, Chromium, Manganese, Iron, Copper, Zinc, Arsenie, Selenium, Cadmium and Plumbum in Cereals and Derived Products-Inductively Coupled Plasamass Spectrometrie Method. National Standardization Administration of China, SAC: Bejing, China, 2018.
- GB 2762-2017; National Health Commission of the People’s Republic of China; National Food Safety Standard—Maximum Levels of Contaminants in Foods. National Standardization Administration of China, SAC: Bejing, China, 2017.
- Fu, G.; Li, Z.; Xu, J.; Xie, W.; Yang, P.; Xu, Y.; Yao, M. Prediction of heavy metal Cd and stress on minerals in rice by analysis of LIBS spectra. Appl. Opt. 2022, 61, 2536–2541. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Hu, T.; Wu, M.; Chen, Q.; Qi, C. Comparative analysis of machine learning algorithms for identifying cobalt contamination in soil using spectroscopy. J. Environ. Chem. Eng. 2024, 12, 113328. [Google Scholar] [CrossRef]
- Alix, G.; Lymer, E.; Zhang, G.; Daly, M.; Gao, X. A comparative performance of machine learning algorithms on laser-induced breakdown spectroscopy data of minerals. J. Chemom. 2022, 37, e3400. [Google Scholar] [CrossRef]
- Loss, F.P.; Pedro, H.; da Cunha, P.H.; Rocha, M.B.; Zanoni, M.P.; de Limaa, L.M.; Nascimento, I.T.; Rezende, I.; Canuto, T.R.P.; Rossoni, R.; et al. Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms. arXiv 2024, arXiv:2401.01200. [Google Scholar]
- Pan, S.; Zheng, Z.; Guo, Z.; Luo, H. An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. J. Pet. Sci. Eng. 2022, 208, 109520. [Google Scholar] [CrossRef]
- Ram, H.; Gandass, N.; Sharma, A.; Singh, A.; Sonah, H.; Deshmukh, R.; Pandey, A.K.; Sharma, T.R. Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit. Rev. Biotechnol. 2020, 40, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Yang, T. Rice Husk, Rice Husk Ash and Their Applications. In Rice Bran Rice Bran Oil; Elsevier: Alpharetta, GA, USA, 2019; pp. 207–246. [Google Scholar]
- Su, L.; Shi, W.; Chen, X.; Meng, L.; Yuan, L.; Chen, X.; Huang, G. Simultaneously and quantitatively analyze the heavy metals in Sargassum fusiforme by laser-induced breakdown spectroscopy. Food Chem. 2021, 338, 127797. [Google Scholar] [CrossRef] [PubMed]
Sample | Rice Husk | Brown Rice | Polished Rice |
---|---|---|---|
#1 | 0.0118 | 0.0132 | 0.0127 |
#2 | 0.0122 | 0.0093 | 0.0096 |
#3 | 0.0206 | 0.0338 | 0.0298 |
#4 | 0.0238 | 0.0248 | 0.0249 |
#5 | 0.0268 | 0.0260 | 0.0288 |
#6 | 0.0287 | 0.0298 | 0.0293 |
#7 | 0.0326 | 0.0378 | 0.0383 |
#8 | 0.0496 | 0.0678 | 0.0630 |
#9 | 0.0614 | 0.0395 | 0.0412 |
#10 | 0.0670 | 0.0729 | 0.0730 |
#11 | 0.0776 | 0.0848 | 0.0823 |
#12 | 0.0804 | 0.0888 | 0.0890 |
#13 | 0.0822 | 0.0790 | 0.0788 |
#14 | 0.0910 | 0.0976 | 0.0938 |
#15 | 0.1180 | 0.1230 | 0.1240 |
#16 | 0.1230 | 0.0822 | 0.0692 |
#17 | 0.1240 | 0.1520 | 0.1430 |
#18 | 0.1890 | 0.1630 | 0.1560 |
#19 | 0.2400 | 0.1660 | 0.1470 |
#20 | 0.2480 | 0.1860 | 0.1900 |
#21 | 0.2900 | 0.2000 | 0.2000 |
Hyperparameterization | Experimental Value | Range |
---|---|---|
n_estimators | 200 | 100–300 |
max_depth | 3 | 3–5 |
gamma | 0.001 | 0–0.01 |
learning_rate | 0.1 | 0–0.2 |
Target Domains | RP2 | RMSEP (mg/kg) | |
---|---|---|---|
Brown rice | XGBoost base model | 0.8778 | 0.0129 |
XGBoost-based transfer learning model | 0.9743 | 0.0039 | |
Variations | 10.99% | −69.77% | |
Polished rice | XGBoost base model | 0.8683 | 0.0154 |
XGBoost-based transfer learning model | 0.9699 | 0.0041 | |
Variations | 11.7% | −73.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Xu, J.; Huang, L.; Xu, Y.; Wan, Q.; Chen, Y.; Yao, M. Improved Cd Detection in Rice Grain Using LIBS with Husk-Based XGBoost Transfer Learning. Agriculture 2024, 14, 2053. https://doi.org/10.3390/agriculture14112053
Xie W, Xu J, Huang L, Xu Y, Wan Q, Chen Y, Yao M. Improved Cd Detection in Rice Grain Using LIBS with Husk-Based XGBoost Transfer Learning. Agriculture. 2024; 14(11):2053. https://doi.org/10.3390/agriculture14112053
Chicago/Turabian StyleXie, Weiping, Jiang Xu, Lin Huang, Yuan Xu, Qi Wan, Yangfan Chen, and Mingyin Yao. 2024. "Improved Cd Detection in Rice Grain Using LIBS with Husk-Based XGBoost Transfer Learning" Agriculture 14, no. 11: 2053. https://doi.org/10.3390/agriculture14112053
APA StyleXie, W., Xu, J., Huang, L., Xu, Y., Wan, Q., Chen, Y., & Yao, M. (2024). Improved Cd Detection in Rice Grain Using LIBS with Husk-Based XGBoost Transfer Learning. Agriculture, 14(11), 2053. https://doi.org/10.3390/agriculture14112053