Transcriptomic and Metabolomic Insight into the Roles of α-Lipoic Acid in the Antioxidant Mechanisms of Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiment and Sample Collection
2.2. Transcriptome Sequencing of Rumen Epithelial Tissue
2.3. Gene Expression Quantified by RT-PCR
2.4. Metabolite Identification and Analysis of Rumen Epithelial Tissue
2.5. Statistical Analysis
3. Results
3.1. Effect of α-LA on Rumen Epithelial Tissue Genes
3.2. Effect of α-LA Addition on Metabolites of Rumen Epithelial Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, D.M.; Qin, T.; Mao, S.Y.; Zhu, W.Y.; Yin, Y.Y.; Huang, J.; Heller, R.; Li, Z.P.; Liu, J.H.; et al. Single-cell transcriptomic landscape of the sheep rumen provides insights into physiological programming development and adaptation of digestive strategies. Zool. Res. 2022, 43, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.L.; Moreau, R. Emerging role of alpha-lipoic acid in the prevention and treatment of bone loss. Nutr. Rev. 2015, 73, 116–125. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, S.M.; Romeiro, C.F.R.; Rodrigues, C.A.; Cerqueira, A.R.L.; Monteiro, M.C. Mitochondrial dysfunction and alpha-lipoic acid: Beneficial or harmful in alzheimer’s disease? Oxidative Med. Cell. Longev. 2019, 2019, 8409329. [Google Scholar] [CrossRef] [PubMed]
- Biewenga, G.P.; Haenen, G.R.; Bast, A. The pharmacology of the antioxidant lipoic acid. Gen. Pharmacol. 1997, 29, 315–331. [Google Scholar] [CrossRef]
- Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta 2009, 1790, 1149–1160. [Google Scholar] [CrossRef]
- Trattner, S.; Pickova, J.; Park, K.H.; Rinchard, J.; Dabrowski, K. Effects of α-lipoic and ascorbic acid on the muscle and brain fatty acids and antioxidant profile of the South American pacu Piaractus mesopotamicus. Aquaculture 2007, 273, 158–164. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Han, F.; Qi, C.; Li, E.; Guo, J.; Qin, J.; Chen, L. α-lipoic acid regulate growth, antioxidant status and lipid metabolism of Chinese mitten crab Eriocheir sinensis: Optimum supplement level and metabonomics response. Aquaculture 2019, 506, 94–103. [Google Scholar] [CrossRef]
- Yazğan, B.; Yazğan, Y.; Nazıroğlu, M. Alpha-lipoic acid modulates the diabetes mellitus-mediated neuropathic pain via inhibition of the TRPV1 channel, apoptosis, and oxidative stress in rats. J. Bioenerg. Biomembr. 2023, 55, 179–193. [Google Scholar] [CrossRef]
- Sztolsztener, K.; Hodun, K.; Chabowski, A. α-lipoic acid ameliorates inflammation state and oxidative stress by reducing the content of bioactive lipid derivatives in the left ventricle of rats fed a high-fat diet. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166440. [Google Scholar] [CrossRef]
- Zwierz, M.; Chabowski, A.; Sztolsztener, K. α-Lipoic acid—A promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch. Biochem. Biophys. 2023, 750, 109811. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, I.; Tomassoni, D.; Roy, P.; Di Cesare Mannelli, L.; Amenta, F.; Tayebati, S.K. Antioxidant Properties of Alpha-Lipoic (Thioctic) Acid Treatment on Renal and Heart Parenchyma in a Rat Model of Hypertension. Antioxidants 2021, 10, 1006. [Google Scholar] [CrossRef]
- Luo, Y.; Ju, N.; Chang, J.; Ge, R.; Zhao, Y.; Zhang, G. Dietary α-lipoic acid supplementation improves postmortem color stability of the lamb muscles through changing muscle fiber types and antioxidative status. Meat Sci. 2022, 193, 108945. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Perillo, L.; Piccione, G.; Gianesella, M.; Bedin, S.; Armato, L.; Giudice, E.; Morgante, M. Effect of combined acetylmethionine, cyanocobalamin and α-lipoic acid on hepatic metabolism in high-yielding dairy cow. J. Dairy. Res. 2016, 83, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.E.; Khalil, W.A.; Abdelnour, S.A.; Aman, R.M. Supplementation of alpha-lipoic acid-loaded nanoliposomes in semen extender improves freezability of buffalo spermatozoa. Sci. Rep. 2022, 12, 22464. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, H.; Pang, F.; Zhang, L.; Fu, T.; Wang, L.; Liu, K.; Gao, T. Effects of α-lipoic acid on growth performance, antioxidant capacity, and immune function in sheep. J. Anim. Sci. 2023, 101, skad092. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, G.; Li, H.; Wang, L.; Fu, T.; Li, G.; Gao, T. Effects of dietary supplementation with alpha-lipoic acid on apparent digestibility and serum metabolome alterations of sheep in summer. Trop. Anim. Health Prod. 2021, 53, 505. [Google Scholar] [CrossRef]
- Samad, H.A.; Konyak, Y.Y.; Latheef, S.K.; Kumar, A.; Khan, I.A.; Verma, V.; Chouhan, V.S.; Verma, M.R.; Maurya, V.P.; Kumar, P.; et al. Alpha lipoic acid supplementation ameliorates the wrath of simulated tropical heat and humidity stress in male murrah buffaloes. Int. J. Biometeorol. 2019, 63, 1331–1346. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G.; Shi, L. Effects of dietary α-lipoic acid on carcass characteristics, antioxidant ca-pability and meat quality in hainan black goats. Ital. J. Anim. Sci. 2017, 16, 61–67. [Google Scholar] [CrossRef]
- Ramos-Martinez, J.I. The regulation of the pentose phosphate pathway: Remember Krebs. Arch. Biochem. Biophys. 2017, 614, 50–52. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Fiorelli, G. Glucose-6-phosphate dehydrogenase deficiency. Lancet 2008, 371, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Luzzatto, L.; Seneca, E. G6PD deficiency: A classic example of pharmacogenetics with on-going clinical implications. Br. J. Haematol. 2014, 164, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.H.; Tsai, S.C.; Chiu, D.T. Decreased blood activity of glucose-6-phosphate dehydrogenase associates with increased risk for diabetes mellitus. Endocrine 2002, 19, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, R.S.; Estwick, D.; Peddi, R. G6PD deficiency: Its role in the high prevalence of hypertension and diabetes mellitus. Ethn. Dis. 2001, 11, 749–754. [Google Scholar]
- Gough, N.R. PPP to the rescue. Sci. Signal. 2015, 8, ec225. [Google Scholar] [CrossRef]
- Yang, H.C.; Wu, Y.H.; Yen, W.C.; Liu, H.Y.; Hwang, T.L.; Stern, A.; Chiu, D.T. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019, 8, 1055. [Google Scholar] [CrossRef]
- Stanton, R.C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 2012, 64, 362–369. [Google Scholar] [CrossRef]
- Irwin, D.M.; Tan, H. Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2008, 3, 96–107. [Google Scholar] [CrossRef]
- Calmettes, G.; Ribalet, B.; John, S.; Korge, P.; Ping, P.P.; Weiss, J.N. Hexokinases and cardioprotection. J. Mol. Cell Cardiol. 2015, 78, 107–115. [Google Scholar] [CrossRef]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 7282–7300. [Google Scholar] [CrossRef]
- Jiang, H.; Kong, R.; Zheng, X.; Wang, Y.; Li, Y.; Bi, Y.; Gong, D.; Prusky, D. Reactive oxygen species homeostasis and carbohydrate metabolism involved in wound healing of carrot induced by hot water treatment. Sci. Hortic. 2024, 326, 112721. [Google Scholar] [CrossRef]
- Mullarky, E.; Cantley, L.C. Diverting Glycolysis to Combat Oxidative Stress. In Innovative Medicine: Basic Research and Development; Nakao, K., Minato, N., Uemoto, S., Eds.; Springer: Tokyo, Japan, 2015; pp. 3–23. [Google Scholar]
- Velvizh, S.; Dakshayan, K.B.; Subramanian, P. Effects of α-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition 2002, 18, 747–750. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequence (5′-3′) | Amplicon Size (bp) | Annealing Temperature (°C) |
---|---|---|---|
SLC15A1 | S: ATCGTGTCGCTGTCCATCGT A: ATCTGTTCCTTTGCTTTTCCTGG | 235 | 60 |
LPL | S: GGCTACGAGATCAACAAGGTCA A: GGAAACTTCAGGCAGGGTAAAA | 213 | 60 |
MGAT4C | S: GATTGGCTATTGACTCATTTCCG A: GACATCTCCTGTTGAAGGTGGTTT | 279 | 60 |
FRZB | S: GTGAAAGAAATAAAGACCAAGTGCC A: GGTGTAAAGGTTCACAGTCTCCC | 111 | 60 |
LIPH | S: GTGGCAACAGTCTTGAAGGAATT A: GGTCCAGACCTGTAATTCTCCCC | 157 | 60 |
CA14 | S: TTACAACGGCTCGCTTACCACT A: AAAGACCATCCGCTGATTGAGA | 193 | 60 |
HSD17B3 | S: AAGGGAATCATCATCCAGGTGT A: AACTCATCAGCAGTCTTGGTTATCA | 98 | 60 |
GRIA1 | S: GCTCAAGAAGAATGCCAACCAG A: CCATTCCAAGCCTTTGTGTCAG | 165 | 60 |
DDO | S: AGATGCTGGTGTTATTCTGGTGTC A: AGGTCTTCTATTCGTCGGGTGAG | 252 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Li, G.; Yang, X.; Zhang, L.; Su, C.; Fu, T.; Wang, L.; Lian, H.; Gao, T.; Liu, K. Transcriptomic and Metabolomic Insight into the Roles of α-Lipoic Acid in the Antioxidant Mechanisms of Sheep. Agriculture 2024, 14, 2055. https://doi.org/10.3390/agriculture14112055
Yao Z, Li G, Yang X, Zhang L, Su C, Fu T, Wang L, Lian H, Gao T, Liu K. Transcriptomic and Metabolomic Insight into the Roles of α-Lipoic Acid in the Antioxidant Mechanisms of Sheep. Agriculture. 2024; 14(11):2055. https://doi.org/10.3390/agriculture14112055
Chicago/Turabian StyleYao, Zhaohui, Gaiying Li, Xinlu Yang, Liyang Zhang, Chuanyou Su, Tong Fu, Linfeng Wang, Hongxia Lian, Tengyun Gao, and Kaizhen Liu. 2024. "Transcriptomic and Metabolomic Insight into the Roles of α-Lipoic Acid in the Antioxidant Mechanisms of Sheep" Agriculture 14, no. 11: 2055. https://doi.org/10.3390/agriculture14112055
APA StyleYao, Z., Li, G., Yang, X., Zhang, L., Su, C., Fu, T., Wang, L., Lian, H., Gao, T., & Liu, K. (2024). Transcriptomic and Metabolomic Insight into the Roles of α-Lipoic Acid in the Antioxidant Mechanisms of Sheep. Agriculture, 14(11), 2055. https://doi.org/10.3390/agriculture14112055