Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Polymer Mulch
2.3. Incubation Media
2.4. Hydrolytic Degradation Experiments
2.5. Long-Term Outdoor Degradation Experiments
- PEUU at zero days: Initial.
- 0.5 kg PEUU m−2, sampled after 275 days: 0.5.
- 1.0 kg PEUU m−2, sampled after 275 days: 1.0.
- 1.0 kg PEUU m−2, disturbed 1 day after application via mechanical ripping and mixing into soil: Disturb.
- 1.0 kg PEUU m−2, reapplied with 1.0 kg m−2 loading after 275 days. Sampled at 497 days: Reapply.
- 1.0 kg PEUU m−2, mechanically tilled into the soil after 275 days of degradation and sampled at 497 days: Till.
3. Characterisation
3.1. Gel Permeation Chromatography
3.2. Scanning Electron Microscopy (SEM)
3.3. Statistical Analysis
4. Results and Discussion
4.1. Hydrolytic Degradation
4.2. Long-Term Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Assessment of Agricultural Plastics and Their Sustainability. A Call for Action; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Espi, E.; Salmeron, A.; Fontecha, A.; Garcia, Y.; Real, A.I. Plastic Films for Agricultural Applications. J. Plast. Film. Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Memon, M.S.; Zhou, J.; Guo, J.; Ullah, F.; Hassan, M.; Ara, S.; Ji, C.; Zhou, J.; Guo, J.; Ullah, F.; et al. Comprehensive review for the effects of ridge furrow plastic mulching on crop yield and water use efficiency under different crops. Int. Agric. Eng. J. 2017, 26, 58–67. [Google Scholar]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Schonbeck, M.W.; Evanylo, G.K. Effects of Mulches on Soil Properties and Tomato Production II. Plant-Available Nitrogen, Organic Matter Input, and Tilth-Related Properties. J. Sustain. Agric. 1998, 13, 83–100. [Google Scholar] [CrossRef]
- Ma, D.; Chen, L.; Qu, H.; Wang, Y.; Misselbrook, T.; Jiang, R. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis. Agric. Water Manag. 2018, 202, 166–173. [Google Scholar] [CrossRef]
- Lalitha Kasthuri Thilagam, M.V.; Balakrishnan, N.; Mansour, M. Effect of Plastic Mulch on Soil Properties and Crop Growth—A Review. Agric. Rev. 2010, 31, 145–149. [Google Scholar]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Troger, J.; Munoz, K.; Fror, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Ejaz Qureshi, M.; Hanjra, M.A.; Ward, J. Impact of water scarcity in Australia on global food security in an era of climate change. Food Policy 2013, 38, 136–145. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture. Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016; ISBN 978-92-5-107671-2 I. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Santagata, G.; Malinconico, M.; Immirzi, B.; Schettini, E.; Mugnozza, G.S.; Vox, G. An overview of biodegradable films and spray coatings as sustainable alternative to oil-based mulching films. Acta Hortic. 2014, 1037, 921–928. [Google Scholar] [CrossRef]
- Adhikari, R.; Bristow, K.L.; Casey, P.S.; Freischmidt, G.; Hornbuckle, J.W.; Adhikari, B. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agric. Water Manag. 2016, 169, 1–13. [Google Scholar] [CrossRef]
- European Commission. Available online: https://environment.ec.europa.eu/strategy/plastics-strategy_en (accessed on 16 October 2023).
- Li, C.H.; Moore-Kucera, J.; Miles, C.; Leonas, K.; Lee, J.; Corbin, A.; Inglis, D. Degradation of Potentially Biodegradable Plastic Mulch Films at Three Diverse U.S. Locations. Agroecol. Sustain. Food Syst. 2014, 38, 861–889. [Google Scholar] [CrossRef]
- Campanale, C.; Galafassi, S.; Di Pippo, F.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. Trends Anal. Chem. 2024, 170, 117391. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.; DeBruyn, J.M. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2016, 59, 526–536. [Google Scholar] [CrossRef]
- Sander, M. Biodegradation of Polymeric Mulch Films in Agricultural Soils: Concepts, Knowledge Gaps, and Future Research Directions. Environ. Sci. Technol. 2019, 53, 2304–2315. [Google Scholar] [CrossRef]
- Brodhagen, M.; Peyron, M.; Miles, C.; Inglis, D.A. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 2014, 99, 1039–1056. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef] [PubMed]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of bioplastic packaging materials: An overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Kijchavengkul, T.; Auras, R. Compostability of polymers. Polym. Int. 2008, 804, 793–804. [Google Scholar] [CrossRef]
- Nishide, H.; Toyota, K.; Kimura, M. Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms. Soil Sci. Plant Nutr. 1999, 45, 963–972. [Google Scholar] [CrossRef]
- Di Franco, C.R.; Cyras, V.P.; Busalmen, J.P.; Ruseckaite, R.A.; Vázquez, A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym. Degrad. Stab. 2004, 86, 95–103. [Google Scholar] [CrossRef]
- Watanabe, A.; Takebayashi, Y.; Ohtsubo, T.; Furukawa, M. Dependence of Biodegradation and Release Behavior on Physical Properties of Poly(caprolactone)-Based Polyurethanes. J. Appl. Polym. Sci. 2010, 114, 246–253. [Google Scholar] [CrossRef]
- Hoshino, A.; Takebayashi, Y.; Ohtsubo, T.; Furukawa, M. Influence of weather conditions and soil properties on degradation of biodegradable plastics in soil. Soil Sci. Plant Nutr. 2001, 47, 35–43. [Google Scholar] [CrossRef]
- Lehmann, R.G.; Miller, J.R.; Collins, H. Microbial Degradation of Dimethylsilanediol in Soil. Water. Air. Soil Pollut. 1998, 106, 111–122. [Google Scholar] [CrossRef]
- Giaccone, M.; Cirillo, C.; Scognamiglio, P.; Teobaldelli, M.; Mataffo, A.; Stinca, A.; Pannico, A.; Immirzi, B.; Santagata, G.; Malinconico, M.; et al. Biodegradable mulching spray for weed control in the cultivation of containerized ornamental shrubs. Chem. Biol. Technol. Agric. 2018, 5, 21. [Google Scholar] [CrossRef]
- Sartore, L.; Schettini, E.; de Palma, L.; Brunetti, G.; Cocozza, C.; Vox, G. Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total Environ. 2018, 645, 1221–1229. [Google Scholar] [CrossRef]
- Sartore, L.; Bignotti, F.; Pandini, S.; D’Amore, A.; Di Landro, L. Green Composites and Blends from Leather Industry Waste. Polym. Compos. 2016, 37, 3416–3422. [Google Scholar] [CrossRef]
- Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Santagata, G. Physical Properties of Innovative Biodegradable Spray Coating for Soil Mulching in Greenhouse Cultivation. Acta Hortic. 2005, 691, 725–732. [Google Scholar] [CrossRef]
- Schettini, E.; Sartore, L.; Barbaglio, M.; Vox, G. Hydrolyzed protein based materials for biodegradable spray mulching coatings. Acta Hortic. 2012, 952, 359–366. [Google Scholar] [CrossRef]
- Fernández, J.E.; Moreno, F.; Murillo, J.M.; Cuevas, M.V.; Kohler, F. Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil. Agric. Water Manag. 2001, 51, 29–51. [Google Scholar] [CrossRef]
- Al-Kalbani, M.S.; Cookson, P.; Rahman, H.A. Uses of Hydrophobic Siloxane Polymer (Guilspare®) for Soil Water Management Application in the Sultanate of Oman. Water Int. 2003, 28, 217–223. [Google Scholar] [CrossRef]
- Immirzi, B.; Santagata, G.; Vox, G.; Schettini, E. Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst. Eng. 2009, 102, 461–472. [Google Scholar] [CrossRef]
- ASTM D5988-03; Standard Test Method for Determining Aerobic Biodegradation in Soil of Plastic Materials or Residual Plastic Materials After Composting. ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–6. [CrossRef]
- Adhikari, R.; Casey, P.; Bristow, K.L.; Freischmidt, G.; Hornbuckle, J. Sprayable Polymer Membrane for Agriculture. U.S. Patent 11,266,083, 8 March 2015. [Google Scholar]
- Borrowman, C.K.; Bücking, M.; Göckener, B.; Adhikari, R.; Kei Saito Patti, A.F. LC-MS analysis of the degradation products of a sprayable, biodegradable poly(ester-urethane-urea). Polym. Degrad. Stab. 2020, 178, 109218. [Google Scholar] [CrossRef]
- Riis, V.; Lorbeer, H.; Babel, W. Extraction of microorganisms from soil: Evaluation of the efficiency by counting methods and activity measurements. Soil Biol. Biochem. 1998, 30, 1573–1581. [Google Scholar] [CrossRef]
- Hiltunen, K.; Tuominen, J.; Seppa, J.V. Hydrolysis of Lactic Acid Based Poly (ester-urethane)s. Polym. Int. 1998, 47, 186–192. [Google Scholar] [CrossRef]
- Pegoretti, A.; Fambri, L.; Penati, A.; Kolarik, J. Hydrolytic Resistance of Model Poly (ether urethane ureas) and Poly (ester urethane ureas). J. Appl. Polym. Sci. 1998, 70, 577–586. [Google Scholar] [CrossRef]
- Chapman, T.M. Models for polyurethane hydrolysis under moderately acidic conditions: A comparative study of hydrolysis rates of urethanes, ureas, and amides. J. Polym. Sci. Part A Polym. Chem. 1989, 27, 1993–2005. [Google Scholar] [CrossRef]
- Borrowman, C.K.; Johnston, P.; Adhikari, R.; Saito, K.; Patti, A.F. Environmental Degradation and Efficacy of a Sprayable, Biodegradable Polymeric Mulch. Polym. Degrad. Stab. 2020, 175, 109126. [Google Scholar] [CrossRef]
- Barratt, S.R.; Ennos, A.R.; Greenhalgh, M.; Robson, G.D.; Handley, P.S. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J. Appl. Microbiol. 2003, 95, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.T. Biodegradation of polyurethane: A review. Int. Biodeterior. Biodegrad. 2002, 49, 245–252. [Google Scholar] [CrossRef]
- Allison, M.F. Deaminase activity in arable soils. Plant Soil 1990, 126, 109–113. [Google Scholar] [CrossRef]
- Yan, F.; Schubert, S.; Mengel, K. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol. Biochem. 1996, 28, 617–624. [Google Scholar] [CrossRef]
- Caritat, P.; Cooper, M. Preliminary Soil pH map of Australia. Ausgeonews 2010, 97, 1–3. [Google Scholar]
- Carlile, P.; Bui, E.; Moran, C.; Minasny, B.; Mcbratney, B. Estimating Soil Particle Size Distributions and Percent Sand, Silt and Clay for Six Texture Classes Using the Australian Soil Resource Information System Point Database; CSIRO Land and Water: Canberra, Australia, 2001. [Google Scholar]
Seville | Echuca | Ouyen | |
---|---|---|---|
Soil Classification | Dermosol | Vertosol | Tenosol |
Electrical Conductivity, dS/m | 0.43 | 0.1656 | 0.06164 |
pH | 5.53 | 7.01 | 6.87 |
% Organic Matter | 6.7 | 2.0 | 0.2 |
C:N | 17.86 | 9.18 | 2.97 |
Sand, % | 56.4 | 31.6 | 96.1 |
Silt, % | 28.5 | 10.8 | 0.2 |
Clay, % | 8.4 | 55.6 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrowman, C.K.; Adhikari, R.; Saito, K.; Gordon, S.; Patti, A.F. Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch. Agriculture 2024, 14, 2062. https://doi.org/10.3390/agriculture14112062
Borrowman CK, Adhikari R, Saito K, Gordon S, Patti AF. Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch. Agriculture. 2024; 14(11):2062. https://doi.org/10.3390/agriculture14112062
Chicago/Turabian StyleBorrowman, Cuyler K., Raju Adhikari, Kei Saito, Stuart Gordon, and Antonio F. Patti. 2024. "Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch" Agriculture 14, no. 11: 2062. https://doi.org/10.3390/agriculture14112062
APA StyleBorrowman, C. K., Adhikari, R., Saito, K., Gordon, S., & Patti, A. F. (2024). Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch. Agriculture, 14(11), 2062. https://doi.org/10.3390/agriculture14112062