The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards, Reagents, and Instruments
2.2. Analytical Methods
2.3. Quality Control
2.4. Description of the Plastic Film Greenhouse
2.5. Sampling Scheme
2.6. Data Analysis, Processing, and Plotting Diagrams
3. Results
3.1. Distribution of PFAAs in the Plastic Film and Air
3.2. Distribution of PFAAs in the Greenhouse Soil
3.3. Contamination in Irrigation Water and Vegetables
4. Discussion
4.1. PFAA Pollution Features
4.2. Plastic Film–Corner Soil–Vegetable Pollution Pathway
4.3. Irrigation Water–Soil–Vegetable Pollution Pathway
4.4. Plastic Film–Air–Vegetable Pollution Pathway
4.5. Feasible Pollution Control Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2005, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.G.; Jones, K.C.; Sweetman, A.J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L. Health risk of dietary exposure to perfluorinated compounds. Environ. Int. 2012, 40, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, P.; Meng, J.; Liu, S.; Lu, Y.; Khim, J.S.; Giesy, J.P. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere 2015, 129, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Song, B.; Lu, Y.; Lv, K.; Gao, W.; Wang, Y.; Jiang, G. The occurrence of per- and polyfluoroalkyl substances (PFASs) in fluoropolymer raw materials and products made in China. J. Environ. Sci. 2021, 107, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Nadal, M. Per- and Polyfluoroalkyl substances (PFASs) in food and human dietary intake: A review of the recent scientific literature. J. Agric. Food Chem. 2017, 65, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Stoiber, T.; Evans, S.; Naidenko, O.V. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere 2020, 260, 127659. [Google Scholar] [CrossRef]
- Costopoulou, D.; Vassiliadou, I.; Leondiadis, L. PFASs intake from fish, eggs and drinking water in Greece in relation to the safety limits for weekly intake proposed in the EFSA scientific opinion of 2020. Chemosphere 2022, 286, 131851. [Google Scholar] [CrossRef]
- Rahman, M.F.; Peldszus, S.; Anderson, W.B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res. 2014, 50, 318–340. [Google Scholar] [CrossRef]
- Jian, J.M.; Chen, D.; Han, F.J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Sunderland, E.; Hu, X.; Dassuncao, C.; Tokranov, A.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Public Consultation on the Draft Scientific Opinion on the Risks to Human Health Related to the Presence of Perfluoroalkyl Substances in Food; European Food Safety Authority (EFSA): Parma, Italy, 2020.
- Zhou, Y.; Zhou, Z.; Lian, Y.; Sun, X.; Wu, Y.; Qiao, L.; Wang, M. Source, transportation, bioaccumulation, distribution and food risk assessment of perfluorinated alkyl substances in vegetables: A review. Food Chem. 2021, 349, 129137. [Google Scholar] [CrossRef] [PubMed]
- D’Hollander, W.; Herzke, D.; Huber, S.; Hajslova, J.; Pulkrabova, J.; Brambilla, G.; De Filippis, S.P.; Bervoets, L.; de Voogt, P. Occurrence of perfluorinated alkylated substances in cereals, salt, sweets and fruit items collected in four European countries. Chemosphere 2015, 129, 179–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, D.; Geng, Y.; Wang, L.; Peng, Y.; He, Z.; Xu, Y.; Liu, X. Perfluorinated Compounds in Greenhouse and Open Agricultural Producing Areas of Three Provinces of China: Levels, Sources and Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 1224. [Google Scholar] [CrossRef]
- Pasecnaja, E.; Bartkevics, V.; Zacs, D. Occurrence of selected per- and polyfluorinated alkyl substances (PFASs) in food available on the European market—A review on levels and human exposure assessment. Chemosphere 2021, 27, 132378. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Sun, H.; Song, M.; Jiang, L.; Li, Y.; Lu, W.; Ying, G.G.; Luo, C.; Zhang, G. Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: Sorption, root uptake, and translocation. Environ. Int. 2021, 156, 106642. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Li, P. Exposure routes, bioaccumulation and toxic effects of per- and polyfluoroalkyl substances (PFASs) on plants: A critical review. Environ. Int. 2022, 158, 106891. [Google Scholar] [CrossRef]
- Duan, Y. Research on the international competitiveness of China’s vegetable industry–comparative analysis of the world’s five largest vegetable exporting countries. Chin. J. World Agric. 2018, 11, 120–129. [Google Scholar]
- Yang, L.; Huang, B.; Hu, W.; Chen, Y.; Mao, M. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China. Ecotox. Environ. Saf. 2013, 97, 204–209. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, P.; Lu, Y.; Lu, X.; Zhang, A.; Liu, Z.; Zhang, Y.; Khan, K.; Sarvajaykesavalu, S. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. Environ. Int. 2020, 135, 105347. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, T. Five development roads of shouguang vegetable–Investigation on the development of shouguang vegetable industry. China Veg. 2020, 2, 6–9. [Google Scholar]
- Wang, P.; Lu, Y.; Wang, T.; Fu, Y.; Zhu, Z.; Liu, S.; Xie, S.; Xiao, Y.; Giesy, J.P. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities. Environ. Pollut. 2014, 190, 115–122. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shi, Y.; Wang, P.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Zhou, Y.; Lu, X. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environ. Int. 2017, 106, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, T.; Li, Q.; Wang, P.; Li, L.; Chen, S.; Zhang, Y.; Khan, K.; Meng, J. Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks. Environ. Pollut. 2018, 238, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Herkert, N.J.; Kassotis, C.D.; Zhang, S.; Han, Y.; Pulikkal, V.F.; Sun, M.; Ferguson, P.L.; Stapleton, H.M. Characterization of per- and polyfluorinated alkyl substances present in commercial anti-fog products and their in vitro adipogenic activity. Environ. Sci. Technol. 2022, 56, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. Application, status quo and trend of fog eliminators for agricultural films for greenhouses. China Plast. 2004, 18, 1–4. [Google Scholar]
- Liu, Y. The elementary discuss on the anti-fogging mechanism of greenhouse film. Plastics 2008, 37, 28–32. [Google Scholar]
- Wang, J.Y.; Zhou, L.G.; Zhang, W.J. Study on research status and development of antidripping and antifogging agent of agricultural polyethylene greenhouse film. Chin. J. Appl. Chem. Ind. 2008, 37, 97–100. [Google Scholar]
- Chen, Z.; Huang, B.; Hu, W.; Wang, W.; Muhammad, I.; Lu, Q.; Jing, G.; Zhang, Z. Ecological-health risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environ. Sci. Pollut. Res. 2021, 28, 42583–42595. [Google Scholar] [CrossRef] [PubMed]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Liu, Y.; Chen, L.; Tao, S.; Liu, W. Distribution characteristic of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ. 2021, 756, 143880. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, J.; Wang, J.; Han, P.; Luan, Y.; Ma, X.; Lu, A. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment. Sci. Total Environ. 2016, 568, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Shuai, W.; Hao, X.; Zhang, H.; Zhou, D.; Gao, J. Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment. Pedosphere 2017, 27, 439–451. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Y.; Jiang, P.; Zheng, L.; Zhang, A.; Qi, H. Concentration, uptake and human dietary intake of novel brominated flame retardants in greenhouse and conventional vegetables. Environ. Int. 2019, 123, 436–443. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Xiang, L.; Gu, C.; Redmile-Gordon, M.; Sheng, H.; Wang, Z.; Fu, Y.; Bian, Y.; Jiang, X. Risk assessment of agricultural plastic films based on release kinetics of phthalate acid esters. Environ. Sci. Technol. 2021, 55, 3676–3685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lian, Y.; Sun, X.; Fu, L.; Duan, S.; Shang, C.; Jia, X.; Wu, Y.; Wang, M. Determination of 20 perfluoroalkyl substances in greenhouse vegetables with a modified one-step pretreatment approach coupled with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS). Chemosphere 2019, 227, 470–479. [Google Scholar] [CrossRef]
- Chen, S.; Jiao, X.C.; Gai, N.; Li, X.J.; Wang, X.C.; Lu, G.H.; Piao, H.T.; Rao, Z.; Yang, Y.L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef]
- Bizkarguenaga, E.; Zabaleta, I.; Mijangos, L.; Iparraguirre, A.; Fernandez, L.A.; Prieto, A.; Zuloaga, O. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Sci. Total Environ. 2016, 571, 444–451. [Google Scholar] [CrossRef]
- Milinovic, J.; Lacorte, S.; Vidal, M.; Rigol, A. Sorption behavior of perfluoroalkyl substances in soils. Sci. Total Environ. 2015, 511, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Eun, H.; Yamazaki, E.; Taniyasu, S.; Miecznikowska, A.; Falandysz, J.; Yamashita, N. Evaluation of perfluoroalkyl substances in field-cultivated vegetables. Chemosphere 2020, 239, 124750. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, T.; Song, S.; Wang, P.; Li, Q.; Zhou, Y.; Lu, Y. Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environ. Pollut. 2018, 238, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hundal, L.S.; Kumar, K.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ. Sci. Technol. 2014, 48, 7858–7865. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.F.; Xiang, L.; Li, X.H.; Ding, Z.R.; Mo, C.H.; Li, Y.W.; Li, H.; Cai, Q.Y.; Zhou, D.M.; Wong, M.H. Cultivar-dependent accumulation and translocation of perfluorooctanesulfonate among lettuce (Lactuca sativa L.) cultivars grown on perfluorooctanesulfonate-contaminated soil. J. Agric. Food Chem. 2018, 66, 13096–13106. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Alam, M.M.; Zhou, J.L.; Xu, B.; Johir, M.A.H.; Karmakar, A.K.; Rahman, M.S.; Hossen, J.; Hasan, A.T.M.K.; Moni, M.A. Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water. Process Saf. Environ. 2020, 136, 1–14. [Google Scholar] [CrossRef]
- Zeng, C.; Atkinson, A.; Sharma, N.; Ashani, H.; Westerhoff, P. Removing per- and polyfluoroalkyl substances from groundwaters using activated carbon and ion exchange resin packed columns. AWWA Wat. Sci. 2020, 2, 1172. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS removal by ion exchange resins: A review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
No. | Abbreviated | Name | Molecular Formula | Structure Formula | CAS No. | Molecular Weight | Log Kow | Bolling Point (°C) |
---|---|---|---|---|---|---|---|---|
1 | PFBA | Perfluorobutanoic acid | C4HF7O2 | 375-22-4 | 214.04 | / | 120 | |
2 | PFPeA | Perfluoropentanoic acid | C5HF9O2 | 2706-90-3 | 264.05 | / | 140 | |
3 | PFHxA | Perfluorohexanoic acid | C6HF11O2 | 307-24-4 | 314.05 | 3.26 | 157 | |
4 | PFHpA | Perfluoroheptanoic acid | C7HF13O2 | 375-85-9 | 364.06 | 3.82 | 175 | |
5 | PFOA | Perfluorooctanoic acid | C8HF15O2 | 335-67-1 | 414.07 | 4.30 | 189 | |
6 | PFOS | Perfluorooctane sulfonate | C8HF17O3S | 1763-23-1 | 500.13 | 5.25 | 260 | |
7 | PFNA | Perfluorononanoic acid | C9HF17O2 | 375-95-1 | 464.08 | 4.84 | 218 | |
8 | PFDA | Perfluorodecanoic acid | C10HF19O2 | 335-76-2 | 514.08 | 5.30 | 218 | |
9 | PFUdA | Perfluoroundecanoic acid | C11HF21O2 | 2058-94-8 | 564.09 | 5.76 | 160 | |
10 | PFDoA | Perfluorododecanoic acid | C12HF23O2 | 307-55-1 | 614.1 | / | 245 | |
11 | PFTrDA | Perfluorotridecanoic acid | C13HF25O2 | 72629-94-8 | 664.11 | / | 260 | |
12 | PFTeDA | Perfluorotetradecanoic acid | C14HF15O2 | 376-06-7 | 486.14 | / | 270 | |
13 | PFHxDA | Perfluorohexadecanoic acid | C16HF31O2 | 67905-19-5 | 814.13 | / | 211 | |
14 | PFODA | Perfluorooctadecanoic acid | C18HF35O2 | 16517-11-6 | 914.14 | / | 235 |
Sampling No. | Greenhouse Age | Concentration of Sum of PFAAs (μg kg−1, d.w.) and Vegetable Types | |||
---|---|---|---|---|---|
Greenhouse Corner Soil | Greenhouse Corner Vegetable | Soil Inside Greenhouse * | Vegetable Inside Greenhouse * | ||
Sample 1, Greenhouse 1 | 22 | 18.5 | 320 (cabbage) | 0.56 | 1.92 (tomato) |
Sample 2, Greenhouse 1 | 22 | 9.50 | 102 (cabbage) | 0.43 | 4.71 (tomato) |
Sample 1, Greenhouse 2 | 15 | 8.39 | 67.2 (cabbage) | 0.61 | 5.52 (tomato) |
Sample 2, Greenhouse 2 | 15 | 7.95 | 155 (cabbage) | 0.88 | 6.13 (tomato) |
Sample 1, Greenhouse 3 | 5 | 1.32 | 4.67 (lettuce) | 0.86 | 9.97 (lettuce) |
Sample 2, Greenhouse 3 | 5 | 0.63 | 3.32 (lettuce) | 0.61 | 6.43 (lettuce) |
Sample 1, Greenhouse 4 | 26 | 23.0 | 198 (cabbage) | 1.62 | 9.85 (cucumber) |
Sample 2, Greenhouse 4 | 26 | 29.2 | 313 (cabbage) | 1.33 | 7.61 (cucumber) |
Sample 1, Greenhouse 5 | 15 | 9.27 | 88.5 (cabbage) | 2.53 | 11.2 (tomato) |
Sample 2, Greenhouse 5 | 15 | 11.4 | 205 (cabbage) | 3.04 | 13.3 (tomato) |
Sample 1, Greenhouse 6 | 11 | 1.23 | 22.4 (cabbage) | 1.11 | 5.42 (pepper) |
Sample 2, Greenhouse 6 | 11 | 1.46 | 10.7 (cabbage) | 0.95 | 8.47 (pepper) |
Sample 1, Greenhouse 7 | 22 | 7.51 | 27.3 (cabbage) | 2.38 | 14.5 (cowpea) |
Sample 2, Greenhouse 7 | 22 | 16.3 | 120 (cabbage) | 2.25 | 16.8 (cowpea) |
Sample 1, Greenhouse 8 | 5 | 1.28 | 14.6 (lettuce) | 1.25 | 8.73 (lettuce) |
Sample 2, Greenhouse 8 | 5 | 1.16 | 6.21 (lettuce) | 0.57 | 6.27 (lettuce) |
Sample 1, Greenhouse 9 | 7 | 0.52 | 6.58 (cabbage) | 0.44 | 6.64 (pepper) |
Sample 2, Greenhouse 9 | 7 | 0.54 | 3.41 (cabbage) | 0.34 | 1.56 (pepper) |
Sample 1, Greenhouse 10 | 11 | 3.78 | 45.4 (cabbage) | 1.15 | 7.24 (eggplant) |
Sample 2, Greenhouse 10 | 11 | 5.26 | 103 (cabbage) | 1.46 | 7.55 (eggplant) |
Sample 1, Greenhouse 11 | 10 | 1.94 | 14.9 (cabbage) | 0.99 | 4.32 (eggplant) |
Sample 2, Greenhouse 11 | 10 | 1.90 | 20.2 (cabbage) | 0.57 | 3.86 (eggplant) |
Sample 1, Greenhouse 12 | 14 | 3.54 | 26.1 (cabbage) | 3.53 | 15.3 (pepper) |
Sample 2, Greenhouse 12 | 14 | 3.45 | 28.6 (cabbage) | 2.85 | 17.7 (pepper) |
Sample 1, Greenhouse 13 | 19 | 7.53 | 122 (lettuce) | 1.22 | 6.23 (lettuce) |
Sample 2, Greenhouse 13 | 19 | 22.0 | 177 (lettuce) | 1.52 | 10.4 (lettuce) |
Sample 1, Greenhouse 14 | 11 | 2.72 | 25.8 (cabbage) | 0.85 | 4.26 (tomato) |
Sample 2, Greenhouse 14 | 11 | 4.46 | 30.6 (cabbage) | 1.41 | 9.55 (tomato) |
Sample 1, Greenhouse 15 | 21 | 17.3 | 274 (lettuce) | 1.57 | 5.62 (lettuce) |
Sample 2, Greenhouse 15 | 21 | 4.94 | 86.3 (lettuce) | 0.86 | 3.10 (lettuce) |
Sample 1, Greenhouse 16 | 26 | 15.5 | 118 (cabbage) | 1.39 | 5.82 (rape) |
Sample 2, Greenhouse 16 | 26 | 29.8 | 411 (cabbage) | 2.37 | 13.4 (rape) |
Sample 1, Greenhouse 17 | 16 | 4.93 | 71.7 (cabbage) | 0.99 | 3.34 (tomato) |
Sample 2, Greenhouse 17 | 16 | 6.78 | 34.7 (cabbage) | 0.68 | 4.12 (tomato) |
Sample 1, Greenhouse 18 | 21 | 18.0 | 185 (cabbage) | 2.36 | 12.6 (cucumber) |
Sample 2, Greenhouse 18 | 21 | 6.69 | 105 (cabbage) | 1.83 | 12.7 (cucumber) |
Sample 1, Greenhouse 19 | 19 | 11.9 | 232 (lettuce) | 1.07 | 8.68 (lettuce) |
Sample 2, Greenhouse 19 | 19 | 18.5 | 283 (lettuce) | 2.61 | 9.59 (lettuce) |
Sample 1, Greenhouse 20 | 22 | 15.9 | 164 (cabbage) | 2.32 | 14.5 (cowpea) |
Sample 2, Greenhouse 20 | 22 | 16.5 | 108 (cabbage) | 3.01 | 17.3 (cowpea) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, M.; Xin, J.; Wu, Y.; Wang, M. The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables. Agriculture 2024, 14, 1321. https://doi.org/10.3390/agriculture14081321
Zhou Y, Wang M, Xin J, Wu Y, Wang M. The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables. Agriculture. 2024; 14(8):1321. https://doi.org/10.3390/agriculture14081321
Chicago/Turabian StyleZhou, Yiran, Mingzhen Wang, Junhong Xin, Yongning Wu, and Minglin Wang. 2024. "The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables" Agriculture 14, no. 8: 1321. https://doi.org/10.3390/agriculture14081321
APA StyleZhou, Y., Wang, M., Xin, J., Wu, Y., & Wang, M. (2024). The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables. Agriculture, 14(8), 1321. https://doi.org/10.3390/agriculture14081321