Design and Testing of a Small-Scale Composting Facility for Sheep Manure Utilizing Aeration and Thermal Treatment
Abstract
:1. Introduction
2. Design and Installation of Composting Equipment
2.1. Theoretical Analysis and Structural Design of Fermentation Silos
2.1.1. Target Compost Volume
2.1.2. Aeration Required for the Stack
2.1.3. Analysis of the Need for Insulation and Subsequent Design
2.1.4. Inlet and Outlet Design
2.1.5. Design of the Mixing Unit
2.1.6. Design of the Pick-Up Device
2.1.7. Structural Design of the Heating Box
2.1.8. Air Pump Selection
2.1.9. Design of Ventilation Ducts
2.2. Model Drawing and Simulation Analysis
2.2.1. Three-Dimensional Model of Composting Equipment
2.2.2. EDEM-Based Churning Analysis
2.2.3. Fluent-Based Analysis of Ventilation Heating
2.3. Design and Installation of Composting Control System
2.3.1. System Design
2.3.2. System Installation and Commissioning
3. Experimental Verification of the Practicality of Composting Equipment
3.1. Pre-Preparation for Composting Trials
3.1.1. Compost Feedstock
3.1.2. Other Test Materials and Instruments
3.1.3. Pre-Test
3.1.4. Test Methods
3.2. Comparison of Composting Effects Under Different Conditions
3.2.1. The Change in Composting Materials’ Temperature
3.2.2. The Change in Composting Materials’ Humidity
3.2.3. The Change in Oxygen Concentration in the Tank
3.2.4. The Change in pH During Composting
3.2.5. The Change in GI During Composting
3.3. Comparison of Test Results and Evaluation of Equipment Practicality
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCGS | Monitor and control generated system |
PLC | Programmable logic controller |
°C | Anders Celsius |
kJ | Kilojoules |
h | Hour |
K | Kelvins |
m3 | Cubic meter |
mm | Millimetre |
W | Watt |
GI | Germination index |
PH | Potential of hydrogen |
Heat released by the electric heating tube | |
The heat absorbed by the air pump during heating | |
Heat conduction on the wall of the heating box | |
Heat absorbed by water evaporation in the air | |
Other forms of heat loss | |
Specific heat capacity of air | |
Air density | |
Ventilation capacity | |
Air temperature change value | |
Air thermal conductivity | |
Contact area | |
Temperature difference between objects | |
Heat transfer distance | |
Net mass of water vapor in the air | |
Enthalpy value of water vapor |
References
- Chen, Y.; Yu, F.; Liang, S. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application. Waste Manag. 2014, 34, 2014–2021. [Google Scholar] [CrossRef]
- Jeong, K.H.; Kim, J.K.; Khan, M.A. A Study on the Characteristics of Livestock Manure Treatment Facility in Korea. Arkhiv. Patol. 2014, 22, 28–44. [Google Scholar]
- Kasinski, S.; Slota, M.; Markowski, M. Municipal waste stabilization in a reactor with an integrated active and passive aeration system. Waste Manag. 2016, 50, 31–38. [Google Scholar] [CrossRef]
- Shimizu, N.; Karyadi, J.N.W.; Harano, M. Cattle manure composting in a packed-bed reactor with forced aeration strategy. Eng. Agric. Environ. Food 2018, 11, 65–73. [Google Scholar] [CrossRef]
- Taeporamaysamai, O.; Ratanatamskul, C. Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor. Int. Biodeterior. Biodegrad. 2016, 113, 357–366. [Google Scholar] [CrossRef]
- Chen, W.; Luo, S.; Du, S. Strategy to Strengthen Rural Domestic Waste Composting at Low Temperature: Choice of Ventilation Condition. Waste Biomass Valorization 2020, 11, 6649–6665. [Google Scholar] [CrossRef]
- Puspitaloka, H.; Mimoto, H.; Tran, Q.N.M.; Koyama, M.; Nakasaki, K. Effect of aeration method on organic matter degradation and ammonia emission of composting in a laboratory-scale reactor. J. Mater. Cycles Waste Manag. 2020, 22, 604–609. [Google Scholar] [CrossRef]
- Sen, Y.; Min, T.; Yaru, C.; Tipeng, W.; Changming, S. Study on mixed compost of cattle dung and corn stalk biogas residue and its impact on environment. J. Chin. Agric. Mech. 2023, 44, 168–173. [Google Scholar]
- Zhou, H.; Di, L.; Hua, X.; Deng, T. The Addition of a Small Dose of Cinnamomum camphora Biomass Unexpectedly Enhanced Lignocellulose Degradation during the Compost of Stropharia rugosoannulata Cultivation Materials. Sustainability 2023, 15, 10483. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Z.; Qi, L.; Zhang, R.; Wang, Y. A Study of the Relationship between Initial Grape Yield and Soil Properties Based on Organic Fertilization. Agronomy 2024, 14, 861. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Ji, Z.; Andom, O.; Wang, X.; Guo, X.; Li, Z. Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China. Agriculture 2023, 13, 1877. [Google Scholar] [CrossRef]
- Zhang, X.A. Research on Nitrogen Loss and In-Situ Nitrogen Conservation in High Temperature Composting of Manure. Master’s Thesis, Chongqing Technology and Business University, Chongqing, China, 2018. [Google Scholar]
- Jiang, Y.; Zhang, Q.; Niu, J.; Wu, J. Pastoral Population Growth and Land Use Policy Has Significantly Impacted Livestock Structure in Inner Mongolia—A Case Study in the Xilinhot Region. Sustainability 2019, 11, 7208. [Google Scholar] [CrossRef]
- Aricha, H.; Simujide, H.; Wang, C.; Zhang, J.; Lv, W.; Jimisi, X.; Liu, B.; Chen, H.; Zhang, C.; He, L.; et al. Comparative Analysis of Fecal Microbiota of Grazing Mongolian Cattle from Different Regions in Inner Mongolia, China. Animals 2021, 11, 1938. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Wang, R.; Li, J.; Zhai, B.; Luo, X.; Yang, X. An Epidemiological Investigation and Drug-Resistant Strain Isolation of Nematodirus oiratianus in Sheep in Inner Mongolia, China. Animals 2023, 13, 30. [Google Scholar] [CrossRef]
- Wang, F. Design and Experiment of Small Composting Equipment for Fecal Matter of Livestock and Poultry Based on Heating by Aeration. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Li, L.-T.; Li, W.-M.; Sun, J.-M.; Chu, F.; Rao, Z.X.; Huang, F.-Q. Research status and prospects of the resource utilization of organic waste in urban and rural areas. J. Agric. Resour. Environ. 2019, 36, 264–271. [Google Scholar]
- Zhao, C.; Wu, B.; Hao, W. Dynamic Changes in Physicochemical Properties and Microbial Community in Three Types of Recycled Manure Solids for Dairy Heifers. Agronomy 2024, 14, 1132. [Google Scholar] [CrossRef]
- Zając, M.; Skrajna, T. Effect of Composted Organic Waste on Miscanthus sinensis Andersson Energy Value. Energies 2024, 17, 2532. [Google Scholar] [CrossRef]
- Zhen, X.; Tan, C.; Li, Z. Humus Transformation and Compost Maturity Indexes in High-Temperature Composting of Livestock and Poultry Manure. J. Biobased Mater. Bioenergy 2022, 16, 329–335. [Google Scholar] [CrossRef]
- Lu, W.; Gao, Y.; Jian, L. Application effect of sheep manure on plant and soil. Acta Ecol. Anim. Domastici 2019, 40, 86–90. [Google Scholar]
- González, R.; Blanco, D.; Cascallana, J.G.; Carrillo-Peña, D.; Gómez, X. Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis. Fermentation 2021, 7, 235. [Google Scholar] [CrossRef]
- Al-Suhaibani, N.; Selim, M.; Alderfasi, A.; El-Hendawy, S. Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem. Sustainability 2021, 13, 7439. [Google Scholar] [CrossRef]
- Kureljušić, J.M.; Vesković Moračanin, S.M.; Đukić, D.A.; Mandić, L.; Đurović, V.; Kureljušić, B.I.; Stojanova, M.T. Comparative Study of Vermicomposting: Apple Pomace Alone and in Combination with Wheat Straw and Manure. Agronomy 2024, 14, 1189. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Y.; Bao, Z.; Yang, Z.; Niu, X.; Meng, Q.; Qin, D.; Wang, Y.; Wan, J.; Guo, X. The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw. Agriculture 2024, 14, 948. [Google Scholar] [CrossRef]
- Rodrigues, T.F.; Itkes, M.P.M.; Brogiato, G.; Marques, V.A.R.; Martins, V.; Villarraga, C.O.; Esposito, E. Agroecological Transformation: Implementation of an Agroforestry System in a Construction Debris Area Focusing on Vegetables Development through Microbial Treatments. Appl. Sci. 2024, 14, 4648. [Google Scholar] [CrossRef]
- Netthisinghe, A.; Woosley, P.; Strunk, W.; Agga, G.; Sistani, K. Composting Dairy Manure with Biochar: Compost Characteristics, Aminopyralid Residual Concentrations, and Phytotoxicity Effects. Agronomy 2024, 14, 952. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Jia, X.; Fang, Y.; Lin, C. Soil Fertility and Bacterial Community Composition in Response to the Composting of Biochar-Amended Chicken Manure. Agronomy 2024, 14, 886. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Wang, J.; Zhang, G.; Yue, Z.; Hu, L.; Yu, J.; Liu, Z. Effects of Different Agricultural Waste Composts on Cabbage Yield and Rhizosphere Environment. Agronomy 2024, 14, 413. [Google Scholar] [CrossRef]
- Alkarimiah, R.; Suja, F. Composting of EFB and POME Using a Step-Feeding Strategy in a Rotary Drum Reactor: The Effect of Active Aeration and Mixing Ratio on Composting Performance. Ecol. Environ. Conserv. 2020, 26, 2543–2553. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Xu, S. Rapid in-situ composting of household food waste. Process Saf. Environ. Prot. 2020, 20, 259–266. [Google Scholar] [CrossRef]
- Yuriandala, Y.; Laily, N.; Maziya, F.B. Vegetable Waste and Food Waste Treatment Using Modified Aerobic Composting Reactor. Appl. Mech. Mater. 2020, 4392, 16–22. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Singh, E.; Binod, P.; Sindhu, R.; Sarsaiya, S.; Kumar, A.; Chen, H.; Duan, Y.; Pandey, A.; Kumar, S.; et al. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. Renew. Sustain. Energy Rev. 2022, 156, 111987. [Google Scholar] [CrossRef]
- Romano, E.; Brambilla, M.; Bisaglia, C.; Assirelli, A. Using Image Texture Analysis to Evaluate Soil–Compost Mechanical Mixing in Organic Farms. Agriculture 2023, 13, 1113. [Google Scholar] [CrossRef]
- Li, D.; Qi, C.; Wei, Y.; Li, G. Measurement of pollution production coefficient of sheep breeding industry in Northern China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 220–227. [Google Scholar]
- Gottschall, R.; Thelen-Jüngling, M.; Kranert, M.; Kehres, B. Suitability of Biowaste and Green Waste Composts for Organic Farming in Germany and the Resulting Utilization Potentials. Agriculture 2023, 13, 740. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Zhao, J.; Ren, X.; Li, R.; Wang, Z.; Wang, M.; Zhang, Z. Improvement of pig manure compost lignocellulose degradation, organic matter humification and compost quality with medical stone. Bioresour. Technol. 2017, 243, 771–777. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Bundela, P.S.; Wong, J.W.C.; Li, R.; Zhang, Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour. Technol. 2016, 213, 181–189. [Google Scholar] [CrossRef]
- Huo, L.; Zhao, L.; Meng, H.; Yao, Z. Study on straw multi-use potential in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 218–224. [Google Scholar]
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Zafiu, C.; Binner, E.; Białowiec, A. Carbon Monoxide Production during Bio-Waste Composting under Different Temperature and Aeration Regimes. Materials 2023, 16, 4551. [Google Scholar] [CrossRef]
- Sobieraj, K.; Stegenta-Dąbrowska, S.; Luo, G.; Koziel, J.A.; Białowiec, A. Biological treatment of biowaste as an innovative source of CO—The role of composting process. Front. Bioeng. Biotechnol. 2023, 11, 1126737. [Google Scholar]
- Stegenta-Dąbrowska, S.; Drabczyński, G.; Sobieraj, K.; Koziel, J.A.; Białowiec, A. The Biotic and Abiotic Carbon Monoxide Formation during Aerobic Co-digestion of Dairy Cattle Manure with Green Waste and Sawdust. Front. Bioeng. Biotechnol. 2019, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chadwick, D.; Norse, D.; Powlson, D.; Shi, W. Sustainable intensification of China’s agriculture: The key role of nutrient management and climate change mitigation and adaptation. Agric. Ecosyst. Environ. 2015, 209, 1–4. [Google Scholar] [CrossRef]
- Gilbert, J.; Siebert, S. ECN Data Report 2022. Compost and Digestate for a Circular Bioeconomy. Overview of Bio-Waste Collection, Treatment & Markets Across Europe; European Compost Network ECN e.V: Bochum, Germany, 2022. [Google Scholar]
- Shrestha, P.P.; Ghimire, A.; Dangi, M.B.; Urynowicz, M.A. Development of a Municipal Solid Waste Management Life Cycle Assessment Tool for Banepa Municipality, Nepal. Sustainability 2023, 15, 9954. [Google Scholar] [CrossRef]
- Prommuak, C.; Jarunglumlert, T.; Putmai, N. Comparative study on different turning device alignments for household food waste composters. Environ. Prog. Sustain. Energy 2018, 37, 1954–1958. [Google Scholar] [CrossRef]
- Schneider, J.; Burg, J.M.; Theilen, U. Towards optimized drum composting: Evaluation of the radial mixing performance of a model substrate on the laboratory scale. Environ. Technol. 2020, 41, 1606–1613. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, L.; Liu, X. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresour. Technol. 2016, 206, 164–172. [Google Scholar] [CrossRef]
- Ren, K.; Su, L.; Zhang, Y.; He, X.; Cai, X. Optimization and Experiment of Livestock and Poultry Manure Composting Equipment with Vented Heating. Sustainability 2023, 15, 11353. [Google Scholar] [CrossRef]
- Ren, K.; Su, L.; Zhang, Y.; He, X.; Wu, H. Development and Evaluation of Cattle Dung Composting Equipment with Ventilation and Heating. Appl. Sci. 2023, 13, 8649. [Google Scholar] [CrossRef]
Power (HP) | Speed (r/min) | Working Air Pressure (MPa) | Mixing Capacity (L) |
---|---|---|---|
0.5 | 50~2800 | 0.6~0.8 | 200 |
Power (HP) | Speed (r/min) | Working Air Pressure (MPa) | Mixing Capacity (L) |
---|---|---|---|
0.5 | 50~2800 | 0.6~0.8 | 200 |
Product Model | Tank Volume (L) | Input Voltage (V) | Frequency (Hz) | Input Power (kW) | Exhaust Volume (L/min) | Rotation Speed (r/min) | Exhaust Pressure (MPa) |
---|---|---|---|---|---|---|---|
JYK35 | 35 | 220 | 50 | 0.8 | 65 | 1400 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ren, K.; Zhang, L. Design and Testing of a Small-Scale Composting Facility for Sheep Manure Utilizing Aeration and Thermal Treatment. Agriculture 2024, 14, 2070. https://doi.org/10.3390/agriculture14112070
Wang J, Ren K, Zhang L. Design and Testing of a Small-Scale Composting Facility for Sheep Manure Utilizing Aeration and Thermal Treatment. Agriculture. 2024; 14(11):2070. https://doi.org/10.3390/agriculture14112070
Chicago/Turabian StyleWang, Jian, Kailin Ren, and Longfei Zhang. 2024. "Design and Testing of a Small-Scale Composting Facility for Sheep Manure Utilizing Aeration and Thermal Treatment" Agriculture 14, no. 11: 2070. https://doi.org/10.3390/agriculture14112070
APA StyleWang, J., Ren, K., & Zhang, L. (2024). Design and Testing of a Small-Scale Composting Facility for Sheep Manure Utilizing Aeration and Thermal Treatment. Agriculture, 14(11), 2070. https://doi.org/10.3390/agriculture14112070