Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China
Abstract
:1. Introduction
2. Methodology and Data
2.1. Methodology
2.2. Accounting Methods for N2O Emissions from Agricultural Land
2.2.1. Direct Emissions
2.2.2. Indirect Emissions
2.3. Accounting Methods for N2O Emissions from Animal Manure
2.4. Accounting Methods to Determine the Intensity of Non-Carbon Dioxide Greenhouse Gas Emissions from Agricultural Activities
2.5. N2O Emission Scenario Prediction Model from Agricultural Activities
2.6. Data
3. Results and Discussion
3.1. Evolution of Spatiotemporal Patterns of Nitrous Oxide Emissions from Agricultural Sources
3.2. Changes in the Emission Intensity of N2O Gas from Agricultural Sources
3.3. Nitrous Oxide Emission Scenario Projection from Agricultural Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanford, M.; Painter, J.; Yasseri, T.; Lorimer, J. Controversy around climate change reports: A case study of Twitter responses to the 2019 IPCC report on land. Clim. Change 2021, 167, 59. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Zhang, Z.; Tamagno, S.; Lundy, M.E.; Mitchell, J.P.; Gaudin, A.C.; Pittelkow, C.M. Changes in soil N2O emissions and nitrogen use efficiency following long-term soil carbon storage: Evidence from a mesocosm experiment. Agric. Ecosyst. Environ. 2024, 370, 109054. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bordoloi, N. Combined impact of reduced N fertilizer and green manure on wheat yield, nitrogen use efficiency and nitrous oxide (N2O) emissions reduction in Jharkhand, eastern India. Field Crops Res. 2024, 318, 109591. [Google Scholar] [CrossRef]
- Müller, R. The impact of the rise in atmospheric nitrous oxide on stratospheric ozone: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Ozone Layer. Ambio 2021, 50, 35–39. [Google Scholar] [CrossRef]
- Thompson, R.L.; Lassaletta, L.; Patra, P.K.; Wilson, C.; Wells, K.C.; Gressent, A.; Koffi, E.N.; Chipperfield, M.P.; Winiwarter, W.; Davidson, E.A. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 2019, 9, 993–998. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Xu, R.; Lu, C.; Canadell, J.G.; Davidson, E.A.; Jackson, R.B.; Arneth, A.; Chang, J.; Ciais, P. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob. Change Biol. 2019, 25, 640–659. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Zhou, Z.; Ren, P.; Xiao, H.; Hu, Z.; Piao, S.; Tian, H.; Tong, Q.; Zhou, F.; Wei, J. Four decades of full-scale nitrous oxide emission inventory in China. Natl. Sci. Rev. 2024, 11, nwad285. [Google Scholar] [CrossRef]
- Harmsen, J.; van Vuuren, D.P.; Nayak, D.R.; Hof, A.F.; Höglund-Isaksson, L.; Lucas, P.L.; Nielsen, J.B.; Smith, P.; Stehfest, E. Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environ. Sci. Policy 2019, 99, 136–149. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Lam, S.K.; Fu, H.; Hu, S.; Chen, D. Temporal and spatial evolution of nitrous oxide emissions in China: Assessment, strategy and recommendation. J. Clean. Prod. 2019, 223, 360–367. [Google Scholar] [CrossRef]
- Meyer-Aurich, A.; Karatay, Y.N. Greenhouse gas mitigation costs of reduced nitrogen fertilizer. Agriculture 2022, 12, 1438. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Sapkota, T.B.; Singh, I.; Kakraliya, M.; Gora, M.K.; Sharma, P.C.; Jat, M.L. Effect of climate-smart agriculture practices on climate change adaptation, greenhouse gas mitigation and economic efficiency of rice-wheat system in India. Agriculture 2021, 11, 1269. [Google Scholar] [CrossRef]
- Laing, A.M.; Eckard, R.J.; Smith, A.P.; Grace, P. Twenty years of nitrous oxide emissions research in Australian agriculture: A review. Agric. Ecosyst. Environ. 2023, 356, 108638. [Google Scholar] [CrossRef]
- Liu, C.M.; Sandhu, N.K.; McCoy, S.T.; Bergerson, J.A. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel production. Sustain. Energy Fuels 2020, 4, 3129–3142. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, C.; Hu, M.; Sun, T. Accounting for Greenhouse Gas Emissions in the Agricultural System of China Based on the Life Cycle Assessment Method. Sustainability 2024, 16, 2594. [Google Scholar] [CrossRef]
- Grados, D.; Butterbach-Bahl, K.; Chen, J.; van Groenigen, K.J.; Olesen, J.E.; van Groenigen, J.W.; Abalos, D. Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. Environ. Res. Lett. 2022, 17, 114024. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Yang, X.; Cui, Z.; Liu, X.; Jiang, R.; Zhang, F.; de Vries, W. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biol. Biochem. 2022, 165, 108523. [Google Scholar] [CrossRef]
- Fabregat-Aibar, L.; Niñerola, A.; Pié, L. Computable general equilibrium models for sustainable development: Past and future. Environ. Sci. Pollut. Res. 2022, 29, 38972–38984. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Ma, X.; Qin, Y. Dynamic computable general equilibrium simulation of agricultural greenhouse gas emissions in China. J. Clean. Prod. 2022, 345, 131122. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, L.; Liang, C.; Yang, X.; Shi, Z.; Wang, C. Characterizing Spatial and Temporal Variations in N2O Emissions from Dairy Manure Management in China Based on IPCC Methodology. Agriculture 2024, 14, 753. [Google Scholar] [CrossRef]
- Li, Z.; Fu, W.; Luo, M.; Chen, J.; Li, L. Calculation and scenario prediction of methane emissions from agricultural activities in China under the background of “carbon peak”. IOP Conf. Ser. Earth Environ. Sci. 2022, 1087, 012021. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Change 2019, 9, 66–72. [Google Scholar] [CrossRef]
- Rogelj, J.; Lamboll, R.D. Substantial reductions in non-CO2 greenhouse gas emissions reductions implied by IPCC estimates of the remaining carbon budget. Commun. Earth Environ. 2024, 5, 35. [Google Scholar] [CrossRef]
- Ou, Y.; Roney, C.; Alsalam, J.; Calvin, K.; Creason, J.; Edmonds, J.; Fawcett, A.A.; Kyle, P.; Narayan, K.; O’Rourke, P. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nat. Commun. 2021, 12, 6245. [Google Scholar] [CrossRef]
- Lin, J.; Khanna, N.; Liu, X.; Wang, W.; Gordon, J.; Dai, F. Opportunities to tackle short-lived climate pollutants and other greenhouse gases for China. Sci. Total Environ. 2022, 842, 156842. [Google Scholar] [CrossRef]
- Huang, T.; Yang, H.; Huang, C.; Ju, X. Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. Eur. J. Soil Sci. 2018, 69, 913–923. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Gavrilova, O.; Leip, A.; Dong, H.; MacDonald, J.; Bravo, C.; Amon, B.; Rosales, R.; Prado, A.; Lima, M.; Oyhantçabal, W. Proceedings of the IPCC 2019 Refinement of IPCC 2006 Guidelines for National Greenhouse Gas Inventories; Geneva, Switzerland, 2019; pp. 1–207. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf (accessed on 11 November 2024).
- National Development and Reform Commission. Guidelines for the Preparation of Provincial Greenhouse Gasinventories (Trial). Available online: http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf (accessed on 11 October 2024).
- Yu, Z.; Zhang, F.; Gao, C.; Mangi, E.; Ali, C. The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China. Renew. Sustain. Energy Rev. 2024, 189, 113924. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Gao, F.; Lv, K.; Qiao, Z.; Ma, F.; Jiang, O. Assessment and prediction of carbon neutrality in the eastern margin ecotone of Qinghai-Tibet Plateau. Sheng Tai Xue Bao 2022, 42, 9442–9455. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, T.; Yuan, R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model. Sci. Total Environ. 2022, 809, 151098. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs. Ministry of Agriculture and Rural Affairs Issued the “14th Five-Year Plan” National Agricultural Mechanization Development Plan. 5 January 2022. Available online: http://www.moa.gov.cn/xw/zwdt/202201/t20220105_6386352.htm (accessed on 11 October 2024).
- Jiang, J.; Zhao, T.; Wang, J. Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of 30 provinces in China. J. Clean. Prod. 2021, 320, 128798. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Yuan, F.; Ata-UI-Karim, S.T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Evaluation of Variable Application Rate of Fertilizers Based on Site-Specific Management Zones for Winter Wheat in Small-Scale Farming. Agronomy 2023, 13, 2812. [Google Scholar] [CrossRef]
- Popa, D.C.; Laurent, Y.; Popa, R.A.; Pasat, A.; Bălănescu, M.; Svertoka, E.; Pogurschi, E.N.; Vidu, L.; Marin, M.P. A Platform for GHG Emissions Management in Mixed Farms. Agriculture 2023, 14, 78. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Fisher, R.E.; France, J.L.; Lowry, D.; Manning, M.R.; Michel, S.E.; Warwick, N.J. Atmospheric methane and nitrous oxide: Challenges alongthe path to Net Zero. Philos. Trans. R. Soc. A 2021, 379, 20200457. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Zeng, F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob. Change Biol. 2021, 27, 3244–3256. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.A.A.; Wei, Q.; Wan, L.; Xu, J.; Hamoud, Y.A.; Li, Y.; Shaghaleh, H. Subsurface drip irrigation with emitters placed at suitable depth can mitigate N2O emissions and enhance Chinese cabbage yield under greenhouse cultivation. Agronomy 2022, 12, 745. [Google Scholar] [CrossRef]
- Shi, R.; Irfan, M.; Liu, G.; Yang, X.; Su, X. Analysis of the impact of livestock structure on carbon emissions of animal husbandry: A sustainable way to improving public health and green environment. Front. Public Health 2022, 10, 835210. [Google Scholar] [CrossRef]
- Puertas, R.; Marti, L.; Calafat, C. Agricultural and innovation policies aimed at mitigating climate change. Environ. Sci. Pollut. Res. 2023, 30, 47299–47310. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-D.; Yu, R.; Qian, X.-Y. Socio-economic and energy-environmental impacts of technological change on China’s agricultural development under the carbon neutrality strategy. Pet. Sci. 2023, 20, 1289–1299. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L. Spatial pattern of China’s agricultural carbon emission performance. Ecol. Indic. 2021, 133, 108345. [Google Scholar] [CrossRef]
Region | Range | |
---|---|---|
Zone I (Shaanxi, Gansu, Xinjiang, Inner Mongolia, Ningxia, Tibet, Shanxi, Qinghai) | 0.0056 | 0.0015~0.0085 |
Zone II (Liaoning, Jilin, Heilongjiang) | 0.0114 | 0.0021~0.0258 |
Zone III (Beijing, Shandong, Hebei, Henan, Tianjin) | 0.0057 | 0.0014~0.0081 |
Zone IV (Zhejiang, Jiangsu, Shanghai, Chongqing, Hunan, Sichuan, Jiangxi, Hubei, Anhui) | 0.0109 | 0.0026~0.022 |
Zone V (Hainan, Guangxi, Fujian, Guangdong) | 0.0178 | 0.0046~0.0228 |
Zone VI (Guizhou, Yunnan) | 0.0106 | 0.0025~0.0218 |
Crop Category | Nitrogen Content of the Grain | Nitrogen Content of Straw | Economic Coefficient | Root–Shoot Ratio | Straw Return Rate |
---|---|---|---|---|---|
Rice | 0.01 | 0.00753 | 0.489 | 0.125 | 0.323 |
Wheat | 0.014 | 0.00516 | 0.434 | 0.166 | 0.765 |
Corn | 0.017 | 0.0058 | 0.438 | 0.17 | 0.093 |
Sorghum | 0.017 | 0.0073 | 0.393 | 0.185 | 0.04 |
Soybean | 0.06 | 0.0181 | 0.425 | 0.13 | 0.093 |
Hemp | 0.0131 | 0.0131 | 0.83 | 0.25 | 0.093 |
Potato | 0.004 | 0.011 | 0.667 | 0.05 | 0.3992 |
Rapeseed | 0.00548 | 0.00548 | 0.271 | 0.15 | 0.6185 |
Vegetable leaves | 0.008 | 0.008 | 0.83 | 0.25 | 0.6185 |
Tobacco | 0.041 | 0.0144 | 0.83 | 0.2 | 0.6185 |
Region | Dairy Cattle | Non-Dairy Cows | Buffalo | Sheep | Goat | Pig | Poultry | Horse | Donkey/ Mule | Camel |
---|---|---|---|---|---|---|---|---|---|---|
North | 1.846 | 0.794 | — | 0.093 | 0.093 | 0.227 | ||||
Northeast | 1.096 | 0.913 | — | 0.057 | 0.057 | 0.266 | ||||
East | 2.065 | 0.846 | 0.875 | 0.113 | 0.113 | 0.175 | ||||
Central South | 1.710 | 0.805 | 0.860 | 0.106 | 0.106 | 0.157 | ||||
Southwest | 1.884 | 0.691 | 1.197 | 0.064 | 0.064 | 0.159 | ||||
Northwest | 1.447 | 0.545 | — | 0.074 | 0.074 | 0.195 |
Variable | Level of | Time Period of Change | ||
---|---|---|---|---|
Change (%) | 2025–2030 | 2031–2040 | 2041–2050 | |
Demographic [35] | Low | 0.5 | 0.10 | 1.50 |
Middle | 1.00 | 0.60 | 1.10 | |
High | 1.50 | 0.20 | 0.70 | |
GDP per capita [36] | Low | 2.50 | 2.0 | 1.50 |
Middle | 3.50 | 3.00 | 2.50 | |
High | 5.50 | 4.50 | 3.50 | |
Agricultural mechanization [37] | Low | 3.00 | 2.50 | 2.00 |
Middle | 3.50 | 3.00 | 2.50 | |
High | 4.00 | 3.50 | 3.00 | |
Effectively irrigated area | Low | 0.07 | 0.10 | 0.15 |
Middle | 0.10 | 0.13 | 0.18 | |
High | 0.13 | 0.16 | 0.21 | |
Agricultural output value [38] | Low | 2.90 | 3.10 | 3.20 |
Middle | 3.30 | 3.50 | 3.60 | |
High | 3.40 | 3.60 | 3.70 | |
Rural populations [35] | Low | −2.00 | −1.00 | −0.50 |
Middle | −3.50 | −2.00 | −0.50 | |
High | −5.00 | −3.50 | −2.00 |
Argument | InI | ||||||
---|---|---|---|---|---|---|---|
North | Northeast | East | Central | South | Southwest | Northwest | |
InP | 0.045 | −0.251 *** | −0.037 | 0.099 | 0.118 *** | 0.112 *** | 0.157 *** |
(1.327) | (−6.121) | (−0.434) | (0.898) | (14.522) | (9.655) | (8.487) | |
lnA | −0.165 *** | 0.004 | −0.376 *** | −0.071 | −0.032 *** | −0.018 | 0.143 *** |
(−6.914) | (0.385) | (−11.397) | (−2.17) | (−3.627) | (−1.241) | (9.016) | |
lnT | 0.236 *** | 0.231 *** | 0.065 ** | −0.049 ** | 0.268 *** | 0.118 *** | 0.011 |
(14.105) | (11.735) | (2.421) | (−1.032) | (22.909) | (5.17) | (0.424) | |
lnG | 0.417 *** | 0.076 *** | 0.367 *** | 0.085 | 0.239 *** | 0.389 *** | 0.161 *** |
(26.033) | (4.709) | (9.923) | (1.033) | (22.367) | (16.797) | (8.032) | |
lnAG | 0.258 *** | 0.06 *** | 0.5 *** | 0.252 *** | 0.058 *** | 0.01 | 0.055 *** |
(16.899) | (4.534) | (13.442) | (6.405) | (4.837) | (0.794) | (5.895) | |
lnRP | 0.083 *** | 0.065 | 0.146 *** | 0.195 *** | 0.209 *** | 0.137 *** | 0.2 *** |
(4.963) | (1.644) | (3.45) | (3.064) | (17.6) | (9.118) | (9.515) | |
Constant terms | −5.917 *** | −0.183 | −3.192 *** | −2.468 *** | −5.086 *** | −4.688 *** | −5.296 *** |
(−21.025) | (−0.522) | (−5.857) | (−3.82) | (−52.005) | (−35.53) | (−30.429) | |
R2 | 0.976 | 0.906 | 0.935 | 0.751 | 0.986 | 0.95 | 0.912 |
Argument | InI | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
InP | −0.115 | −0.002 | 0.025 |
(−1.277) | (−0.026) | (0.28) | |
lnA | −0.229 *** | −1.262 *** | −3.541 *** |
(−5.557) | (−8.95) | (−4.052) | |
(lnA)2 | - | 0.058 *** | 0.338 *** |
(7.634) | (3.18) | ||
(lnA)3 | - | - | −0.011 *** |
(−2.642) | |||
lnT | −0.027 | −0.052 | −0.054 |
(−0.6) | (−1.218) | (−1.266) | |
lnG | 0.17 *** | 0.183 *** | 0.177 *** |
(3.894) | (4.383) | (4.239) | |
lnAG | 0.49 *** | 0.521 *** | 0.53 *** |
(13.126) | (14.43) | (14.682) | |
lnRP | 0.566 *** | 0.52 *** | 0.507 *** |
(8.957) | (8.528) | (8.324) | |
Constant terms | −4.952 *** | −1.105 ** | 4.847 ** |
(−29.189) | (−2.087) | (2.095) | |
R2 | 0.867 | 0.877 | 0.878 |
Region | North China, Northeast China | East China, Central China | Northwest | South China, Southwest China | ||||
---|---|---|---|---|---|---|---|---|
scene | ES | GD | ES | GD | ES | GD | ES | GD |
P | ||||||||
A | ||||||||
T | ||||||||
G | ||||||||
AG | ||||||||
RP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, M.; Xi, W.; Wang, Y.; Wang, G. Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China. Agriculture 2024, 14, 2074. https://doi.org/10.3390/agriculture14112074
Bu M, Xi W, Wang Y, Wang G. Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China. Agriculture. 2024; 14(11):2074. https://doi.org/10.3390/agriculture14112074
Chicago/Turabian StyleBu, Miaoling, Weiming Xi, Yu Wang, and Guofeng Wang. 2024. "Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China" Agriculture 14, no. 11: 2074. https://doi.org/10.3390/agriculture14112074
APA StyleBu, M., Xi, W., Wang, Y., & Wang, G. (2024). Scenario-Based Modeling of Agricultural Nitrous Oxide Emissions in China. Agriculture, 14(11), 2074. https://doi.org/10.3390/agriculture14112074