Residual Herbicide in Cover Cropping Systems
Abstract
:1. Weed Management in Agriculture
2. Cover Crops in U.S.
3. Cover Crop Effect on Weed Management
4. Soil Residual Herbicides
5. Herbicide Interception by Cover Crop Residue
6. Biodegradation of Soil Residual Herbicides
Enzyme | Herbicide | Herbicide Effect (28 to 50 Days of Incubation) | Reference |
---|---|---|---|
β-glucosidase | Linuron | No effect | [90] |
Metribuzin | No effect | [90] | |
Diflufenican | - | [99] | |
Glyphosate | - | [99] | |
Dehydrogenase | Atrazine | - | [82] |
Diuron | No effect | [100] | |
Butachlor | ++ | [101] | |
Alkaline phosphatase | Bromoxynil | ++ | [91] |
Imazethapyr | + | [81] | |
Rimsulfuron | No effect | [81] |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- USDA-ERS. What Is Agriculture’s Share of the Overall U.S. Economy? 2020. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=58270 (accessed on 22 March 2021).
- USDA-ERS. World Agricultural Supply and Demand Estimates; USDA-ERS: Washington, DC, USA, 2023; 642p. [Google Scholar]
- NASS. NASS Highlights: Agricultural Resource Management Survey; U.S. Soybean Industry: Washington, DC, USA, 2014. [Google Scholar]
- Chandler, J.M.; AS, H.; AG, T. Crop Losses Due to Weeds in Canada and the United States; WSSA Special Publication: Champaign, IL, USA, 1984. [Google Scholar]
- Soltani, N.; Dille, J.; Burke, I.; Everman, W.; VanGessel, M.; Davis, V.; Sikkema, P. Potential corn yield losses due to weeds in North America. Weed Technol. 2016, 30, 979–984. [Google Scholar] [CrossRef]
- Research and Markets. Herbicides Global Market Report 2020. 2020. Available online: https://www.researchandmarkets.com/r/1rkzfi (accessed on 9 February 2021).
- Radosevich, S.R.; Ghersa, C.M. Weeds, Crops, and Herbicides: A Modern-Day “Neckriddle”. Weed Technol. 1992, 6, 788–795. [Google Scholar] [CrossRef]
- Heap. International Survey of Herbicide Resistant Weeds. 2024. Available online: http://www.weedscience.org/Summary/Species.aspx (accessed on 1 September 2024).
- ISDA Living Green Covers: 2014–2022. 2022. Available online: https://www.in.gov/isda/files/Living-Green-Color-Trends-2022.pdf (accessed on 13 October 2023).
- NASS. 2018 State Agriculture Overview—Indiana; NASS: Chicago, IL, USA, 2019. [Google Scholar]
- Dabney, S.M.; Delgado, J.A.; Reeves, D.W. Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1221–1250. [Google Scholar] [CrossRef]
- Chami, B.; Niles, M.T.; Parry, S.; Mirsky, S.B.; Ackroyd, V.J.; Ryan, M.R. Incentive programs promote cover crop adoption in the northeastern United States. Agric. Environ. Lett. 2023, 8, e20114. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortenseny, D.M.; Ryany, M.R.; Shumway, D.L. Timing of Cover-Crop Management Effects on Weed Suppression in No-Till Planted Soybean using a Roller-Crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Porter, P.M.; Baker, J.M. Winter Rye Cover Crop Management Influences on Soil Water, Soil Nitrate, and Corn Development. Agron. J. 2011, 103, 316–323. [Google Scholar] [CrossRef]
- Lawley, Y.E.; Weil, R.R.; Teasdale, J.R. Forage Radish Cover Crop Suppresses Winter Annual Weeds in Fall and Before Corn Planting. Agron. J. 2011, 103, 137–144. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Singer, J.W. The Use of Cover Crops to Manage Soil. In Soil Management: Building a Stable Base for Agriculture; Soil Science Society of America: Madison, WI, USA, 2015; pp. 321–337. [Google Scholar]
- Kristensen, H.L.; Thorup-Kristensen, K. Root Growth and Nitrate Uptake of Three Different Catch Crops in Deep Soil Layers. Soil Sci. Soc. Am. J. 2004, 68, 529–537. [Google Scholar] [CrossRef]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of Cover Crops in Improving Soil and Row Crop Productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Abdul-Baki, A.A.; Mills, D.J.; Thorpe, K.W. Enhanced pest management with cover crop mulches. Acta Hortic. 2004, 638, 135–140. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. Light Transmittance, Soil Temperature, and Soil Moisture under Residue of Hairy Vetch and Rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1994; pp. 1–21. [Google Scholar]
- Elliott, L. The microbial component of soil quality. Soil Biochem. 1996, 9, 1–21. [Google Scholar]
- Nielsen, M.N.; Winding, A. Microorganisms as Indicators of Soil Health. Technical Report, no. 388; National Environmental Research Institute: Copenhagen, Denmark, 2002. [Google Scholar]
- McDaniel, M.D.; Tiemann, L.K.; Grandy, A.S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 2014, 24, 560–570. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Scow, K.M.; Córdova-Kreylos, A.L.; Holmes, W.E.; Six, J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 2011, 43, 20–30. [Google Scholar] [CrossRef]
- Murphy, D.V.; Stockdale, E.A.; Poulton, P.R.; Willison, T.W.; Goulding, K.W.T. Seasonal dynamics of carbon and nitrogen pools and fluxes under continuous arable and ley-arable rotations in a temperate environment. Eur. J. Soil Sci. 2007, 58, 1410–1424. [Google Scholar] [CrossRef]
- Balkcom, K.S.; Arriaga, F.J.; van Santen, E. Conservation Systems to Enhance Soil Carbon Sequestration in the Southeast U.S. Coastal Plain. Soil Sci. Soc. Am. J. 2013, 77, 1774–1783. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Finzi, A.C.; Sinsabaugh, R.L.; Long, T.M.; Osgood, M.P. Microbial Community Responses to Atmospheric Carbon Dioxide Enrichment in a Warm-Temperate Forest. Ecosystems 2006, 9, 215–226. [Google Scholar] [CrossRef]
- Joshi, S.; Mohapatra, B.; Mishra, J.P.N. Microbial Soil Enzymes: Implications in the Maintenance of Rhizosphere Ecosystem and Soil Health. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Adhya, T.K., Lal, B., Mohapatra, B., Paul, D., Das, S., Eds.; Soil-Microbe Interaction; Springer: Singapore, 2018; Volume 1, pp. 179–192. [Google Scholar]
- Chavarría, D.N.; Verdenelli, R.A.; Serri, D.L.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S. Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Eur. J. Soil Biol. 2016, 76, 74–82. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Mendes, I.C.; Bandick, A.K.; Dick, R.P.; Bottomley, P.J. Microbial Biomass and Activities in Soil Aggregates Affected by Winter Cover Crops. Soil Sci. Soc. Am. J. 1999, 63, 873–881. [Google Scholar] [CrossRef]
- Tyler, H.L. Winter cover crops and no till management enhance enzyme activities in soybean field 700 soils. Pedobiologia 2020, 81–82, 150666. [Google Scholar]
- Kladivko, E. Cover Crops for Modern Cropping Systems. 2015. Available online: https://extension.purdue.edu/extmedia/AY/AY-352-W.pdf (accessed on 8 November 2020).
- Cornelius, C.D.; Bradley, K.W. Herbicide Programs for the Termination of Various Cover Crop Species. Weed Technol. 2017, 31, 514–522. [Google Scholar] [CrossRef]
- Deines, J.M.; Guan, K.; Lopez, B.; Zhou, Q.; White, C.S.; Wang, S.; Lobell, D.B. Recent cover crop adoption is associated with small maize and soybean yield losses in the United States. Glob. Chang. Biol. 2023, 29, 794–807. [Google Scholar] [CrossRef]
- Thelen, K.D.; Mutch, D.R.; Martin, T.E. Utility of Interseeded Winter Cereal Rye in Organic Soybean Production Systems. Agron. J. 2004, 96, 281–284. [Google Scholar] [CrossRef]
- Clark, A.J. (Ed.) Managing Cover Crops Profitably, 3rd ed.; Sustainable agriculture network handbook series 9; Sustainable Agriculture Network: Beltsville, MD, USA, 2007. [Google Scholar]
- Davis, A.S. Cover-Crop Roller–Crimper Contributes to Weed Management in No-Till Soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Baraibar, B.; Hunter, M.C.; Schipanski, M.E.; Hamilton, A.; Mortensen, D.A. Weed Suppression in Cover Crop Monocultures and Mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Cholette, T.B.; Soltani, N.; Hooker, D.C.; Robinson, D.E.; Sikkema, P.H. Suppression of Glyphosate-resistant Canada Fleabane (Conyza canadensis) in Corn with Cover Crops Seeded after Wheat Harvest the Previous Year. Weed Technol. 2018, 32, 244–250. [Google Scholar] [CrossRef]
- DeSimini, S.A.; Gibson, K.D.; Armstrong, S.D.; Zimmer, M.; Maia, L.O.R.; Johnson, W.G. Effect of cereal rye and canola on winter and summer annual weed emergence in corn. Weed Technol. 2020, 34, 787–793. [Google Scholar] [CrossRef]
- Earl Creech, J.; Westphal, A.; Ferris, V.R.; Faghihi, J.; Vyn, T.J.; Santini, J.B.; Johnson, W.G. Influence of Winter Annual Weed Management and Crop Rotation on Soybean Cyst Nematode (Heterodera glycines) and Winter Annual Weeds. Weed Sci. 2008, 56, 103–111. [Google Scholar] [CrossRef]
- Hodgskiss, C.L.; Young, B.G.; Armstrong, S.D.; Johnson, W.G. Evaluating cereal rye and crimson clover for weed suppression within buffer areas in dicamba-resistant soybean. Weed Technol. 2020, 35, 404–411. [Google Scholar] [CrossRef]
- Palhano, M.G.; Norsworthy, J.K.; Barber, T. Cover Crops Suppression of Palmer Amaranth (Amaranthus palmeri) in Cotton. Weed Technol. 2018, 32, 60–65. [Google Scholar] [CrossRef]
- Pittman, K.B.; Barney, J.N.; Flessner, M.L. Horseweed (Conyza canadensis) Suppression from Cover Crop Mixtures and Fall-Applied Residual Herbicides. Weed Technol. 2019, 33, 303–311. [Google Scholar] [CrossRef]
- Werle, R.; Burr, C.; Blanco-Canqui, H. Cereal rye cover crop suppresses winter annual weeds. Can. J. Plant Sci. 2017, 98, 498–500. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Williams, M. Assessment of weed and crop fitness in cover crop residues for integrated weed management. Weed Sci. 1998, 46, 595–603. [Google Scholar] [CrossRef]
- Wallace, J.M.; Curran, W.S.; Mortensen, D.A. Cover crop effects on horseweed (Erigeron canadensis) density and size inequality at the time of herbicide exposure. Weed Sci. 2019, 67, 327–338. [Google Scholar] [CrossRef]
- Teasdale, J.R. Cover crops, smother plants, and weed management. In Integrated Weed and Soil Management; Hatfield, J.L., Buhler, D.D., Stewart, B.A., Eds.; Ann Arbor Press: Chelsea, MI, USA, 1998; pp. 247–270. [Google Scholar]
- Reberg-Horton, S.C.; Burton, J.D.; Danehower, D.A.; Ma, G.; Monks, D.W.; Murphy, J.P.; Ranells, N.N.; Williamson, J.D.; Creamer, N.G. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J. Chem. Ecol. 2005, 31, 179–193. [Google Scholar] [CrossRef]
- Shilling, D.G.; Liebl, R.A.; Worsham, A.D. Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Mulch: The Suppression of Certain Broadleaved Weeds and the Isolation and Identification of Phytotoxins. In The Chemistry of Allelopathy: Biochemical Interactions among Plants; Thompson, A.C., Ed.; American Chemical Society: Washington, DC, USA, 1985; pp. 243–271. [Google Scholar]
- Teasdale, J.R.; Pillai, P.; Collins, R.T. Synergism between cover crop residue and herbicide activity on emergence and early growth of weeds. Weed Sci. 2005, 53, 521–527. [Google Scholar] [CrossRef]
- Whalen, D.M.; Shergill, L.S.; Kinne, L.P.; Bish, M.D.; Bradley, K.W. Integration of residual herbicides with cover crop termination in soybean. Weed Technol. 2020, 34, 11–18. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Chapter 15—Herbicides and Soil. In Fundamentals of Weed Science, 5th ed.; Zimdahl, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 445–462. [Google Scholar]
- Nishimoto, R.K.; Appleby, A.P.; Furtick, W.R. Plant Response to Herbicide Placement in Soil. Weed Sci. 1969, 17, 475–478. [Google Scholar] [CrossRef]
- Banks, P.A.; Robinson, E.L. The Influence of Straw Mulch on the Soil Reception and Persistence of Metribuzin. Weed Sci. 1982, 30, 164–168. [Google Scholar] [CrossRef]
- Ghadiri, H.; Shea, P.J.; Wicks, G.A. Interception and Retention of Atrazine by Wheat (Triticum aestivum L.) Stubble. Weed Sci. 1984, 32, 24–27. [Google Scholar] [CrossRef]
- Isensee, A.R.; Sadeghi, A.M. Effects of Tillage and Rainfall on Atrazine Residue Levels in Soil. Weed Sci. 1994, 42, 462–467. [Google Scholar] [CrossRef]
- Sorenson, B.A.; Shea, P.J.; Roeth, F.W. Effects of tillage, application time and rate on metribuzin dissipation. Weed Res. 1991, 31, 333–345. [Google Scholar] [CrossRef]
- Jones, J.N.; Moody, J.E.; Lillard, J.H. Effects of Tillage, No Tillage, and Mulch on Soil Water and Plant Growth. Agron. J. 1969, 61, 719–721A. [Google Scholar] [CrossRef]
- Triplett, G.B.; Van Doren, D.M.; Schmidt, B.L. Effect of Corn (Zea mays L.) Stover Mulch on No-Tillage Corn Yield and Water Infiltration. Agron. J. 1968, 60, 236–239. [Google Scholar] [CrossRef]
- Jones, R.E.; Banks, P.A.; Radcliffe, D.E. Alachlor and Metribuzin Movement and Dissipation in a Soil Profile as Influenced by Soil Surface Condition. Weed. Sci. 1990, 38, 589–597. [Google Scholar] [CrossRef]
- Carbonari, C.A.; Gomes, G.L.G.C.; Trindade, M.L.B.; Silva, J.R.M.; Velini, E.D. Dynamics of Sulfentrazone Applied to Sugarcane Crop Residues. Weed Sci. 2016, 64, 201–206. [Google Scholar] [CrossRef]
- Reddy, K.N.; Locke, M.A.; Wagner, S.C.; Zablotowicz, R.M.; Gaston, L.A.; Smeda, R.J. Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-desiccated cover crop residues. J. Agric. Food Chem. 1995, 43, 2752–2757. [Google Scholar] [CrossRef]
- Shaner, D. Herbicide Handbook; Weed Science Society of America: Lawrence, KS, USA, 2014. [Google Scholar]
- McDowell, L.; Willis, G.H.; Smith, S.; Southwick, L.M. Insecticide Wash off from Cotton Plants as a Function of Time Between Application and Rainfall. Trans. ASAE 1985, 28, 1896–1900. [Google Scholar] [CrossRef]
- Willis, G.H.; McDowell, L.L.; Smith Sammie Southwick, L.M. Foliar wash off of oil-applied malathion and permethrin as a function of time after application. J. Agric. Food Chem. 1992, 40, 1086–1089. [Google Scholar] [CrossRef]
- Willis, G.H.; McDowell, L.L. Pesticide persistence on foliage. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Ware, G.W., Ed.; Springer: New York, NY, USA, 1987; pp. 23–73. [Google Scholar]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil. PLoS ONE 2019, 14, e0210219. [Google Scholar] [CrossRef]
- Bedos, C.; Rousseau-Djabri, M.F.; Gabrielle, B.; Flura, D.; Durand, B.; Barriuso, E.; Cellier, P. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation. Environ. Pollut. 2006, 144, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Grass, B.; Wenclawiak, B.W.; Rüdel, H. Influence of air velocity, air temperature, and air humidity on the volatilization of trifluralin from soil. Chemosphere 1994, 28, 491–499. [Google Scholar] [CrossRef]
- Khalil, Y.; Flower, K.; Siddique, K.H.M.; Ward, P. Effect of crop residues on interception and activity of prosulfocarb, pyroxasulfone, and trifluralin. PLoS ONE 2018, 13, e0208274. [Google Scholar] [CrossRef]
- Dao, T.H. Field Decay of Wheat Straw and its Effects on Metribuzin and S-Ethyl Metribuzin Sorption and Elution from Crop Residues. J. Env. Qual. 1991, 20, 203–208. [Google Scholar] [CrossRef]
- Unger, P.W.; Parker, J.J. Residue Placement Effects on Decomposition, Evaporation, and Soil Moisture Distribution1. Agron. J. 1968, 60, 469–472. [Google Scholar] [CrossRef]
- Reinertsen, S.A.; Elliott, L.F.; Cochran, V.L.; Campbell, G.S. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 1984, 16, 459–464. [Google Scholar] [CrossRef]
- Zabaloy, M.C.; Zanini, G.P.; Bianchinotti, V.; Gomez, M.A.; Garland, J.L. Herbicides in the soil environment: Linkage between bioavailability and microbial ecology. In Herbicides, Theory and Applications; Soloneski, S.A.L., Marcelo, L., Eds.; InTech: Houston, TX, USA, 2011; pp. 161–192. [Google Scholar]
- Perucci, P.; Dumontet, S.; Bufo, S.A.; Mazzatura, A.; Casucci, C. Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol. Fertil. Soils 2000, 32, 17–23. [Google Scholar] [CrossRef]
- Radivojević, L. The impact of atrazine on several biochemical properties of chernozem soil. J. Serbian Chem. Soc. 2008, 73, 951. [Google Scholar] [CrossRef]
- Sebiomo, A.; Ogundero, V.; Bankole, S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2010, 10, 770–778. [Google Scholar]
- Tomkiel, M.; Baćmaga, M.; Borowik, A.; Kucharski, J.; Wyszkowska, J. Effect of a mixture of flufenacet and isoxaflutole on population numbers of soil-dwelling microorganisms, enzymatic activity of soil, and maize yield. J. Env. Sci. Health Part B 2019, 54, 832–842. [Google Scholar] [CrossRef]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Kennedy, I.R.; Kookana, R.S.; Zwieten, L.V. Impact of Herbicides on Soil Biology and Function. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 133–220. [Google Scholar]
- Deng, S.P.; Tabatabai, M.A. Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol. Fertil. Soils 1997, 24, 141–146. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. In Methods for Assessing Soil Quality; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 247–271. [Google Scholar]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 775–833. [Google Scholar]
- Deng, S.P.; Tabatabai, M.A. Cellulase activity of soils. Soil Biol. Biochem. 1994, 26, 1347–1354. [Google Scholar] [CrossRef]
- Niemi, R.M.; Heiskanen, I.; Ahtiainen, J.H.; Rahkonen, A.; Mäntykoski, K.; Welling, L.; Laitinen, P.; Ruuttunen, P. Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl. Soil Ecol. 2009, 41, 293–304. [Google Scholar] [CrossRef]
- Omar, S.A.; Abdel-Sater, M.A. Microbial Populations and Enzyme Activities in Soil Treated with Pesticides. Water Air Soil. Pollut. 2001, 127, 49–63. [Google Scholar] [CrossRef]
- Mukherjee, S.; Tripathi, S.; Mukherjee, A.K.; Bhattacharyya, A.; Chakrabarti, K. Persistence of the herbicides florasulam and halauxifen-methyl in alluvial and saline alluvial soils, and their effects on microbial indicators of soil quality. Eur. J. Soil Biol. 2016, 73, 93–99. [Google Scholar] [CrossRef]
- Kucharski, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Wyszkowska, J. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide. J. Environ. Sci. Health Part B 2016, 51, 446–454. [Google Scholar] [CrossRef]
- Singh, A.; Ghoshal, N. Impact of herbicide and various soil amendments on soil enzymes activities in a tropical rainfed agroecosystem. Eur. J. Soil Biol. 2013, 54, 56–62. [Google Scholar] [CrossRef]
- Schaffer, A. Pesticide effects on enzyme activities in the soil ecosystem. In Soil Biochemistry; Bollag, J.-M., Stotzky, G., Eds.; Marcel Dekker: New York, NY, USA, 1993; Volume 8, pp. 273–340. [Google Scholar]
- Dixon, M.; Webb, E.C.; Thorne, C.J.R. Enzymes, 3rd ed.; completely rev.; Longman: London, UK, 1979; 1116p. [Google Scholar]
- Prosser, J.A.; Speir, T.W.; Stott, D.E. Soil Oxidoreductases and FDA Hydrolysis. In Methods of Soil Enzymology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 103–124. [Google Scholar]
- Riah, W.; Laval, K.; Laroche-Ajzenberg, E.; Mougin, C.; Latour, X.; Trinsoutrot-Gattin, I. Effects of pesticides on soil enzymes: A review. Environ. Chem. Lett. 2014, 12, 257–273. [Google Scholar] [CrossRef]
- Tejada, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate plus diflufenican herbicides. Chemosphere 2009, 76, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Fernandez-Bayo, J.; Diaz, J.M.C.; Nogales, R. Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Appl. Soil Ecol. 2010, 44, 198–204. [Google Scholar] [CrossRef]
- Min, H.; Ye, Y.F.; Chen, Z.Y.; Wu, W.X.; Du, Y.F. Effects of butachlor on microbial populations and enzyme activities in paddy soil. J. Environ. Sci. Health B 2001, 36, 581–595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, L.O.R.; Piveta, L.B.; Johnson, W.G. Residual Herbicide in Cover Cropping Systems. Agriculture 2024, 14, 2089. https://doi.org/10.3390/agriculture14112089
Maia LOR, Piveta LB, Johnson WG. Residual Herbicide in Cover Cropping Systems. Agriculture. 2024; 14(11):2089. https://doi.org/10.3390/agriculture14112089
Chicago/Turabian StyleMaia, Lucas O. R., Leonard B. Piveta, and William G. Johnson. 2024. "Residual Herbicide in Cover Cropping Systems" Agriculture 14, no. 11: 2089. https://doi.org/10.3390/agriculture14112089
APA StyleMaia, L. O. R., Piveta, L. B., & Johnson, W. G. (2024). Residual Herbicide in Cover Cropping Systems. Agriculture, 14(11), 2089. https://doi.org/10.3390/agriculture14112089