Prediction of the Potentially Suitable Areas of Sesame in China Under Climate Change Scenarios Using MaxEnt Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence Data of Sesame
2.2. Selection of Bioclimatic Variables
2.3. Model Settings and Evaluation
2.4. Reclassifying Suitable Areas and Assessing Bioclimatic Variables
3. Results
3.1. Major Bioclimatic Variable Affecting Sesame Cultivation Distribution
3.2. Model Calibration and Performance
3.3. Spatial Distribution of Suitable Areas for Sesame Under Current Climate Scenario
3.4. Spatial Distribution of Suitable Areas for Sesame Under Future Climate Scenarios
3.5. Changes in the Spatial Distribution of Suitable Areas for Sesame
4. Discussion
4.1. Effect of Bioclimatic Variables on Geographical Distribution of Sesame
4.2. Effect of Climate Change on Geographical Distribution of Sesame
4.3. Suggestions and Potential Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eftekhari, M.S. Impacts of climate change on agriculture and horticulture. In Climate Change: The Social and Scientific Construct; Springer International Publishing: Cham, Switzerland, 2022; pp. 117–131. [Google Scholar]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive Plant Species Establishment and Range Dynamics in Sri Lanka under Climate Change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [PubMed]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cheng, G.W.; Li, W.P. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences 2013, 10, 1707–1715. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, L.; Shi, J.; Wei, P. Vegetation Dynamics and Their Response to Climatic Variability in China. Adv. Meteorol. 2017, 1, 8282353. [Google Scholar] [CrossRef]
- He, Q.; Zhou, G. Climate-associated distribution of summer maize in China from 1961 to 2010. Agric. Ecosyst. Environ. 2016, 232, 326–335. [Google Scholar] [CrossRef]
- Duan, J.; Zhou, G. Dynamics of decadal changes in the distribution of double-cropping rice cultivation in China. Sci. Bull. 2013, 58, 1955–1963. [Google Scholar] [CrossRef]
- Piirainen, S.; Lehikoinen, A.; Husby, M.; Kålås, J.A.; Lindström, Å.; Ovaskainen, O. Species distributions models may predict accurately future distributions but poorly how distributions change: A critical perspective on model validation. Divers. Distrib. 2023, 29, 654–665. [Google Scholar] [CrossRef]
- Elith, J.; Ferrier, S.; Huettmann, F.; Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model. 2005, 186, 280–289. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, P.R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- de Aguiar, C.V.S.; Alencar, J.B.R.; da Silva Santana, G.; Teles, B.R. Predicting the Potential Global Distribution of Scirtothrips dorsalis (Hood) (Thysanoptera: Thripidae) with Emphasis on the Americas Using an Ecological Niche Model. Neotrop. Entomol. 2023, 52, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Kogo, B.K.; Kumar, L.; Koech, R.; Kariyawasam, C.S. Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy 2019, 9, 727. [Google Scholar] [CrossRef]
- Chen, X.; Dimitrov, N.B.; Meyers, L.A. Uncertainty analysis of species distribution models. PLoS ONE 2019, 14, e0214190. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yang, T.; Wang, K.; Huang, W. Assessing the Current and Future Potential Distribution of Solanum rostratum Dunal in China Using Multisource Remote Sensing Data and Principal Component Analysis. Remote Sens. 2024, 16, 271. [Google Scholar] [CrossRef]
- Parthapratim, K.; Bikas, D.; Manoj, K.; Dipanwita, B. Predicting the impact of climate change on habitat suitability and morphological traits of Begonia aborensis Dunn in Northeastern India: An endemic taxon of Indo-Myanmar hotspot. Braz. J. Bot. 2023, 46, 667–680. [Google Scholar]
- Zhang, Y.; Dong, Y.; Huang, W.; Guo, J.; Wang, N.; Ding, X. Extraction and Analysis of Grasshopper Potential Habitat in Hulunbuir Based on the Maximum Entropy Model. Remote Sens. 2024, 16, 746. [Google Scholar] [CrossRef]
- Feng, L.; Wang, H.; Ma, X.; Peng, H.; Shan, J. Modeling the current land suitability and future dynamics of global soybean cultivation under climate change scenarios. Field Crops Res. 2021, 263, 108069. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xie, L.Y.; Zhou, X.Y.; Chen, R.F.; Zhao, G.H.; Zhang, F.G. Prediction of the potentially suitable areas of Leonurus japonicus in China based on future climate change using the optimized MaxEnt model. Ecol. Evol. 2023, 13, e10597. [Google Scholar] [CrossRef]
- Pandey, B.B.; Ratnakumar, P.; Usha Kiran, B.; Dudhe, M.Y.; Lakshmi, G.S.; Ramesh, K.; Guhey, A. Identifying Traits Associated with Terminal Drought Tolerance in Sesame (Sesamum indicum L.) Genotypes. Front. Plant Sci. 2021, 12, 739896. [Google Scholar] [CrossRef]
- Abebe, D.M.; Mengistie, D.T.; Mekonen, A.A. The influence of climate change on the sesame yield in North Gondar, North Ethiopia: Application Autoregressive Distributed Lag (ARDL) time series model. BMC Plant Biol. 2024, 24, 506. [Google Scholar] [CrossRef]
- Baath, G.S.; Kakani, V.G.; Northup, B.K.; Gowda, P.H.; Rocateli, A.C.; Singh, H. Quantifying and Modeling the Influence of Temperature on Growth and Reproductive Development of Sesame. J. Plant Growth Regul. 2022, 41, 143–152. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zhang, J.; Zang, H.; Hu, F.; Gao, T.; Huang, M.; Li, Y.; Li, G. Assessing Changes in Climatic Suitability for Sesame Cultivation in China (1978–2019) Based on Fuzzy Mathematics. Agronomy 2024, 14, 631. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 2011, 109, 117. [Google Scholar] [CrossRef]
- Cai, Q.Q.; An, M.T.; Yu, J.H.; Tian, L.; Wu, M.X. Suitable habitat prediction of Pinus kwangtungensis in China under climate change. J. Shaanxi Norm. Univ. 2024, 52, 90–102. (In Chinese) [Google Scholar]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. Earth Environ. 2006, 30, 751–777. [Google Scholar] [CrossRef]
- Singh, K.; McClean, C.J.; Büker, P.; Hartley, S.E.; Hill, J.K. Mapping regional risks from climate change for rainfed rice cultivation in India. Agric. Syst. 2017, 156, 76–84. [Google Scholar] [CrossRef]
- Papier, C.M.; Poulos, H.M.; Kusch, A. Invasive species and carbon flux: The case of invasive beavers (Castor canadensis) in riparian Nothofagus forests of Tierra del Fuego, Chile. Clim. Change 2019, 153, 219–234. [Google Scholar] [CrossRef]
- Guevara, L.; Gerstner, B.E.; Kass, J.M.; Anderson, R.P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. Glob. Change Biol. 2017, 24, 1511–1522. [Google Scholar] [CrossRef]
- Wang, C.; Shi, X.; Liu, J.; Zhao, J.; Bo, X.; Chen, F.; Chu, Q. Interdecadal variation of potato climate suitability in China. Agric. Ecosyst. Environ. 2021, 310, 107293. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Cong, M.; Xu, Y.; Tang, L.; Yang, W.; Jian, M. Predicting the dynamic distribution of Sphagnum bogs in China under climate change since the last interglacial period. PLoS ONE 2020, 15, e0230969. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, Y.L.; Qin, H.; Meng, Q.X. Prediction on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China. Chin. J. Appl. Ecol. 2019, 30, 496–502. (In Chinese) [Google Scholar]
- Yan, H.; He, J.; Xu, X.; Yao, X.; Wang, G.; Tang, L.; Feng, L.; Zou, L.; Gu, X.; Qu, Y.; et al. Prediction of Potentially Suitable Distributions of Codonopsis pilosula in China Based on an Optimized MaxEnt Model. Front. Ecol. Evol. 2021, 9, 773396. [Google Scholar] [CrossRef]
- Wang, X.L.; Tu, Y.; Gu, Z.Q. Comparative study of temperature illumination and water conditions in growing period of autumn sesame and summer in Jianghan Plain. Chin. J. Oil Crop Sci. 2002, 24, 55–58. (In Chinese) [Google Scholar]
- Habibullah, M.; Sarkar, S.; Islam, M.M.; Ahmed, K.U.; Rahman, M.Z.; Awad, M.F.; ElSayed, A.I.; Mansour, E.; Hossain, M.S. Assessing the Response of Diverse Sesame Genotypes to Waterlogging Durations at Different Plant Growth Stages. Plants 2021, 10, 2294. [Google Scholar] [CrossRef]
- Baghery, M.A.; Kazemitabar, S.K.; Dehestani, A.; Mehrabanjoubani, P. Sesame (Sesamum indicum L.) response to drought stress: Susceptible and tolerant genotypes exhibit different physiological, biochemical, and molecular response patterns. Physiol. Mol. Biol. Plants 2023, 29, 1353–1369. [Google Scholar] [CrossRef]
- Luo, S.B.; Zhang, X.R.; Wang, Q.; Wang, L.H.; Tang, H.F.; Xu, Y.H.; Cheng, G.W.; Li, Y. Exploration of the development of China’s sesame industry in the new era. Anhui Agric. Sci. Bull. 2019, 25, 47–49+61. (In Chinese) [Google Scholar]
- Wang, J.; Fu, M.Q.; Sun, Y.; Liu, B.; Wang, X.H.; Chen, F. Spatio-temporal evolution of sesame production in county-level areas of China during 1985–2015. J. China Agric. Univ. 2020, 25, 203–213. (In Chinese) [Google Scholar]
- Shirazi, S.Z.; Mei, X.R.; Liu, B.C.; Liu, Y. Assessing the impact of climate change in the wheat–maize cropping system across the Huang–Huai–Hai Plain under future climate scenarios. J. Water Clim. Change 2022, 13, 2847–2871. [Google Scholar] [CrossRef]
- Harfi, M.E.; Hanine, H.; Rizki, H.; Latrache, H.; Nabloussi, A. Effect of drought and salt stresses on germination and early seedling growth of different color-seeds of sesame (Sesamum indicum). Int. J. Agric. Biol. 2016, 18, 1088–1094. [Google Scholar] [CrossRef]
- Dossa, K.; Li, D.; Wang, L.; Zheng, X.; Yu, J.; Wei, X.; Fonceka, D.; Diouf, D.; Liao, B.; Cisse, N.; et al. Dynamic transcriptome landscape of sesame (Sesamum indicum L.) under progressive drought and after rewatering. Genom. Data 2017, 11, 122–124. [Google Scholar] [CrossRef] [PubMed]
Bioclimatic Variables | Description | Unit |
---|---|---|
Bio1 | Annual mean temperature | °C |
Bio2 | Mean diurnal range | °C |
Bio3 | Isothermality | |
Bio4 | Temperature seasonality | |
Bio5 | Max temperature of the warmest month | °C |
Bio6 | Min temperature of the coldest month | °C |
Bio7 | Temperature annual range | °C |
Bio8 | Mean temperature of wettest quarter | °C |
Bio9 | Mean temperature of driest quarter | °C |
Bio10 | Mean temperature of warmest quarter | °C |
Bio11 | Mean temperature of coldest quarter | °C |
Bio12 | Annual precipitation | mm |
Bio13 | Precipitation of the wettest month | mm |
Bio14 | Precipitation of the driest month | mm |
Bio15 | Precipitation seasonality | |
Bio16 | Precipitation of the wettest quarter | mm |
Bio17 | Precipitation of the driest quarter | mm |
Bio18 | Precipitation of the warmest quarter | mm |
Bio19 | Precipitation of the coldest quarter | mm |
Class of Suitability | Existence Probability |
---|---|
Highly suitable | 0.8–1.0 |
Moderately suitable | 0.5–0.8 |
Lowly suitable | 0.2–0.5 |
Unsuitable | 0.0–0.2 |
Bioclimatic Variables | Percent Contribution | Permutation Importance |
---|---|---|
Max temperature of the warmest month | 21.5 | 11.6 |
Annual precipitation | 13.5 | 26.4 |
Precipitation of the driest month | 11.3 | 16 |
Precipitation of the wettest month | 11.2 | 2.2 |
Precipitation of the driest quarter | 10.8 | 3.3 |
Mean temperature of the warmest quarter | 6.8 | 1.1 |
Temperature seasonality | 5.7 | 4.8 |
Mean temperature of the wettest quarter | 4.7 | 7.8 |
Temperature annual range | 4.1 | 3.4 |
Isothermality | 2.7 | 1.2 |
Annual mean temperature | 1.8 | 0.3 |
Mean diurnal range | 1.6 | 0.7 |
Precipitation seasonality | 1.4 | 9.6 |
Precipitation of the coldest quarter | 0.8 | 3.5 |
Mean temperature of driest quarter | 0.6 | 1.9 |
Min temperature of the coldest month | 0.5 | 0.2 |
Precipitation of the wettest quarter | 0.5 | 0.5 |
Precipitation of the warmest quarter | 0.2 | 5.3 |
Mean temperature of the coldest quarter | 0.1 | 0.2 |
Setting | OR | AUCtest ± SD | ||
---|---|---|---|---|
RM | FC | 0% | 10% | |
1 | LH | 0.029 | 0.184 | 0.810 ± 0.023 |
1.5 | LH | 0.013 | 0.109 | 0.827 ± 0.021 |
2 | LH | 0.013 | 0.113 | 0.831 ± 0.021 |
2.5 | LH | 0.009 | 0.138 | 0.813 ± 0.022 |
1 | LQ | 0.059 | 0.127 | 0.816 ± 0.023 |
1.5 | LQ | 0.007 | 0.102 | 0.817 ± 0.023 |
2 | LQ | 0.009 | 0.127 | 0.807 ± 0.024 |
2.5 | LQ | 0.018 | 0.116 | 0.811 ± 0.024 |
1 | LQH | 0.018 | 0.179 | 0.812 ± 0.023 |
1.5 | LQH | 0.016 | 0.161 | 0.823 ± 0.022 |
2 | LQH | 0.009 | 0.146 | 0.824 ± 0.022 |
2.5 | LQH | 0.007 | 0.102 | 0.829 ± 0.021 |
1 | LQPT | 0.025 | 0.216 | 0.817 ± 0.023 |
1.5 | LQPT | 0.016 | 0.143 | 0.832 ± 0.022 |
2 | LQPT | 0.004 | 0.095 | 0.841 ± 0.020 |
2.5 | LQPT | 0.011 | 0.138 | 0.828 ± 0.022 |
1 | LQHPT | 0.016 | 0.198 | 0.822 ± 0.022 |
1.5 | LQHPT | 0.029 | 0.175 | 0.824 ± 0.023 |
2 | LQHPT | 0.009 | 0.132 | 0.826 ± 0.021 |
2.5 | LQHPT | 0.009 | 0.166 | 0.816 ± 0.022 |
Predicted Area (104 km2) | Comparison with Current Distribution (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Scenarios | Periods | Unsuitable Areas | Lowly Suitable Areas | Moderately Suitable Areas | Highly Suitable Areas | Unsuitable Areas | Lowly Suitable Areas | Moderately Suitable Areas | Highly Suitable Areas |
Current | 1970–2000 | 481.92 | 249.28 | 168.16 | 64.51 | ||||
SSP126 | 2021–2040 | 499.96 | 264.54 | 133.40 | 65.97 | 3.74 | 6.12 | –20.67 | 2.27 |
2041–2060 | 486.39 | 249.47 | 167.65 | 60.36 | 0.93 | 0.08 | –0.31 | –6.43 | |
2061–2080 | 496.39 | 270.88 | 129.43 | 67.17 | 3.00 | 8.67 | –23.03 | 4.13 | |
2081–2100 | 510.36 | 254.38 | 133.70 | 65.43 | 5.90 | 2.05 | –20.49 | 1.42 | |
SSP245 | 2021–2040 | 510.34 | 245.93 | 141.74 | 65.86 | 5.90 | –1.34 | –15.71 | 2.09 |
2041–2060 | 504.78 | 261.59 | 132.44 | 65.06 | 4.74 | 4.94 | –21.24 | 0.85 | |
2061–2080 | 500.36 | 260.87 | 138.06 | 64.58 | 3.83 | 4.65 | –17.90 | 0.10 | |
2081–2100 | 508.02 | 237.17 | 150.86 | 67.82 | 5.42 | –4.86 | –10.29 | 5.14 | |
SSP370 | 2021–2040 | 515.56 | 243.21 | 145.06 | 60.05 | 6.98 | –2.43 | –13.74 | –6.92 |
2041–2060 | 501.32 | 256.09 | 141.45 | 65.01 | 4.03 | 2.70 | –15.89 | 0.78 | |
2061–2080 | 504.40 | 252.89 | 138.54 | 68.04 | 4.66 | 1.45 | –17.61 | 5.47 | |
2081–2100 | 488.10 | 266.28 | 137.57 | 71.92 | 1.28 | 6.82 | –18.19 | 11.48 | |
SSP585 | 2021–2040 | 491.86 | 251.42 | 155.68 | 64.90 | 2.06 | 0.86 | –7.42 | 0.60 |
2041–2060 | 503.26 | 242.72 | 153.28 | 64.61 | 4.43 | –2.63 | –8.85 | 0.16 | |
2061–2080 | 495.23 | 267.40 | 135.19 | 66.05 | 2.76 | 7.27 | –19.61 | 2.39 | |
2081–2100 | 493.90 | 251.95 | 154.63 | 63.39 | 2.49 | 1.07 | –8.05 | –1.73 |
Current–2040s | 2040s–2060s | 2060s–2080s | 2080s–2100s | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Percent (%) | Area (104 km2) | Percent (%) | Area (104 km2) | Percent (%) | Area (104 km2) | Percent (%) | ||
SSP126 | Expansion | 5.52 | 0.57 | 20.90 | 2.17 | 9.01 | 0.93 | 4.90 | 0.51 |
Unsuitable | 476.40 | 49.43 | 479.06 | 49.70 | 477.38 | 49.53 | 491.49 | 50.99 | |
Unchanged | 458.39 | 47.56 | 456.58 | 47.37 | 458.48 | 47.57 | 448.62 | 46.54 | |
Contraction | 23.56 | 2.44 | 7.33 | 0.76 | 19.00 | 1.97 | 18.86 | 1.96 | |
SSP245 | Expansion | 2.75 | 0.29 | 17.76 | 1.84 | 8.48 | 0.88 | 10.14 | 1.05 |
Unsuitable | 479.17 | 49.71 | 492.58 | 51.10 | 496.30 | 51.49 | 490.22 | 50.86 | |
Unchanged | 450.78 | 46.77 | 441.32 | 45.79 | 455.03 | 47.21 | 445.71 | 46.24 | |
Contraction | 31.17 | 3.23 | 12.21 | 1.27 | 4.06 | 0.42 | 17.80 | 1.85 | |
SSP370 | Expansion | 5.11 | 0.53 | 22.75 | 2.36 | 7.38 | 0.77 | 19.85 | 2.06 |
Unsuitable | 476.81 | 49.47 | 492.80 | 51.13 | 493.94 | 51.25 | 484.55 | 50.27 | |
Unchanged | 443.21 | 45.98 | 439.80 | 45.63 | 452.09 | 46.90 | 455.92 | 47.30 | |
Contraction | 38.74 | 4.02 | 8.51 | 0.88 | 10.46 | 1.09 | 3.55 | 0.37 | |
SSP585 | Expansion | 16.78 | 1.74 | 14.36 | 1.49 | 15.98 | 1.66 | 12.77 | 1.33 |
Unsuitable | 465.14 | 48.26 | 477.50 | 49.54 | 487.28 | 50.55 | 482.45 | 50.05 | |
Unchanged | 455.23 | 47.23 | 446.25 | 46.30 | 452.67 | 46.96 | 457.20 | 47.43 | |
Contraction | 26.72 | 2.77 | 25.76 | 2.67 | 7.95 | 0.82 | 11.45 | 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wang, X.; Zhang, J.; Hu, F.; Zang, H.; Gao, T.; Li, Y.; Huang, M. Prediction of the Potentially Suitable Areas of Sesame in China Under Climate Change Scenarios Using MaxEnt Model. Agriculture 2024, 14, 2090. https://doi.org/10.3390/agriculture14112090
Li G, Wang X, Zhang J, Hu F, Zang H, Gao T, Li Y, Huang M. Prediction of the Potentially Suitable Areas of Sesame in China Under Climate Change Scenarios Using MaxEnt Model. Agriculture. 2024; 14(11):2090. https://doi.org/10.3390/agriculture14112090
Chicago/Turabian StyleLi, Guoqiang, Xue Wang, Jie Zhang, Feng Hu, Hecang Zang, Tongmei Gao, Youjun Li, and Ming Huang. 2024. "Prediction of the Potentially Suitable Areas of Sesame in China Under Climate Change Scenarios Using MaxEnt Model" Agriculture 14, no. 11: 2090. https://doi.org/10.3390/agriculture14112090
APA StyleLi, G., Wang, X., Zhang, J., Hu, F., Zang, H., Gao, T., Li, Y., & Huang, M. (2024). Prediction of the Potentially Suitable Areas of Sesame in China Under Climate Change Scenarios Using MaxEnt Model. Agriculture, 14(11), 2090. https://doi.org/10.3390/agriculture14112090