Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Experimental Design
2.3. Soil Sample Collection and Determination
2.3.1. Determination of Soil Physical Properties
2.3.2. Determination of Soil Chemical Properties and Enzyme Activities
2.4. Soil Quality Index (SQI) Assessment
2.5. DNA Extraction, Library Construction, and High-Throughput Sequencing
2.6. Statistical Analysis
3. Results
3.1. Variations in SQI Across Four Land-Use Types and Influencing Factors
3.2. Variations in Soil Microbial Community Structure and Dominant Species Among Four Different Land-Use Types
3.3. Relationships Between Soil Properties and Microbial Communities Under Four Different Land-Use Types
4. Discussion
4.1. Changes in Soil Properties and SQI Across Various Land-Use Types
4.2. Effects of Various Land-Use Types on Soil Microbial Communities
4.3. Response of Microbial Communities to Soil Physicochemical Properties Across Different Land-Use Types
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, C.; Li, K.; Wen, C.; Li, J.; Fan, P.; Ruan, Y.; Meng, L.; Jia, Z. Changes in Physicochemical Properties and Bacterial Communities of Tropical Soil in China under Different Soil Utilization Types. Agronomy 2023, 13, 1897. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Liu, J.; Zhang, Z.; Zhang, W.; Qi, Y.; Li, W.; Chen, Y. Changes of soil bacterial community, network structure, and carbon, nitrogen and sulfur functional genes under different land use types. Catena 2023, 231, 107385. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Marvin, D.C.; Cameron, D.R.; Selmants, P.C.; Westerling, A.L.; Kreitler, J.; Daniel, C.J.; Liu, J.; Wilson, T.S. Effects of 21st-century climate, land use, and disturbances on ecosystem carbon balance in California. Glob. Change Biol. 2019, 25, 3334–3353. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishina, K.; Noda, H.M. Impacts of future climate change on the carbon budget of northern high-latitude terrestrial ecosystems: An analysis using ISI-MIP data. Polar Sci. 2016, 10, 346–355. [Google Scholar] [CrossRef]
- Le Noë, J.; Erb, K.-H.; Matej, S.; Magerl, A.; Bhan, M.; Gingrich, S. Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case. Anthropocene 2021, 33, 100275. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Bennett, X.W.J. Policy analysis of the conversion of crop land to forest and grassland program in China. Environ. Econ. Policy Stud. 2008, 9, 119–143. [Google Scholar]
- Na, J.; Yang, X.; Tang, G.; Dang, W.; Strobl, J. Population Characteristics of Loess Gully System in the Loess Plateau of China. Remote Sens. 2020, 12, 2639. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Zhang, S.; Chen, Y.; Zhao, G. Comprehensive Monitoring and Benefit Evaluation of Converting Farmlands into Forests and Grasslands in China. Int. J. Environ. Res. Public Health 2022, 19, 6942. [Google Scholar] [CrossRef]
- Jiao, F.; Wen, Z.-M.; An, S.-S.; Yuan, Z. Successional changes in soil stoichiometry after land abandonment in Loess Plateau, China. Ecol. Eng. 2013, 58, 249–254. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Wu, H.; Hu, B.; Yan, J.; Cheng, X.; Yi, P.; Kang, F.; Han, H. Mixed plantation regulates forest floor water retention and temperature sensitivity in restored ecosystems on the Loess Plateau, China. Catena 2023, 222, 106838. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.-w.; Wang, J. Spatial variation in soil water on a hillslope with ephemeral gullies restored by different vegetation restoration modes on the Loess Plateau. Catena 2023, 224, 107001. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2023, 22, 226–239. [Google Scholar] [CrossRef]
- Engelhardt, I.C.; Welty, A.; Blazewicz, S.J.; Bru, D.; Rouard, N.; Breuil, M.-C.; Gessler, A.; Galiano, L.; Miranda, J.C.; Spor, A.; et al. Depth matters: Effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. ISME J. 2018, 12, 1061–1071. [Google Scholar] [CrossRef]
- Medriano, C.A.; Chan, A.; De Sotto, R.; Bae, S. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. Sci. Total Environ. 2023, 869, 161722. [Google Scholar] [CrossRef]
- He, H.; Miao, Y.; Gan, Y.; Wei, S.; Tan, S.; Rask, K.A.; Wang, L.; Dai, J.; Chen, W.; Ekelund, F. Soil bacterial community response to long-term land use conversion in Yellow River Delta. Appl. Soil Ecol. 2020, 156, 103709. [Google Scholar] [CrossRef]
- Zhou, J.; He, Z.; Yang, Y.; Deng, Y.; Tringe, S.G.; Alvarez-Cohen, L. High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. mBio 2015, 6, e02288-14. [Google Scholar] [CrossRef]
- Ji, C.; Huang, J.; Zhang, X.; Yang, G.; Xing, S.; Fu, W.; Hao, Z.; Chen, B.; Zhang, X. Response of soil fungal community to chromium contamination in agricultural soils with different physicochemical properties. Sci. Total Environ. 2023, 879, 163244. [Google Scholar] [CrossRef]
- Wan, P.; Zhou, Z.; Yuan, Z.; Wei, H.; Huang, F.; Li, Z.; Li, F.-M.; Zhang, F. Fungal community composition changes and reduced bacterial diversity drive improvements in the soil quality index during arable land restoration. Environ. Res. 2024, 244, 117931. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2019, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Gans, J.; Wolinsky, M.; Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Sci. Total Environ. 2005, 309, 1387–1390. [Google Scholar] [CrossRef]
- Voříšková, J.; Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013, 7, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dou, Y.; Huang, Y.; An, S. Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau. Front. Microbiol. 2017, 8, 2198. [Google Scholar] [CrossRef]
- Kou, Z.; Li, C.; Chang, S.; Miao, Y.; Zhang, W.; Li, Q.; Dang, T.; Wang, Y. Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau. J. Arid. Land 2023, 15, 960–974. [Google Scholar] [CrossRef]
- Niu, B.; Fu, G. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau—A review. Sci. Total Environ. 2024, 912, 168878. [Google Scholar] [CrossRef]
- He, H.; Xu, M.; Li, W.; Chen, L.; Chen, Y.; Moorhead, D.L.; Brangarí, A.C.; Liu, J.; Cui, Y.; Zeng, Y.; et al. Linking soil depth to aridity effects on soil microbial community composition, diversity and resource limitation. Catena 2023, 232, 107393. [Google Scholar] [CrossRef]
- Xie, M.; Yuan, J.; Liu, S.; Xu, G.; Lu, Y.; Yan, L.; Li, G. Soil Carbon and Nitrogen Pools and Their Storage Characteristics under Different Vegetation Restoration Types on the Loess Plateau of Longzhong, China. Forests 2024, 15, 173. [Google Scholar] [CrossRef]
- Chai, J.; Yu, X.; Xu, C.; Xiao, H.; Zhang, J.; Yang, H.; Pan, T. Effects of yak and Tibetan sheep trampling on soil properties in the northeastern Qinghai-Tibetan Plateau. Appl. Soil Ecol. 2019, 144, 147–154. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, T.; Sha, G.; Zhu, Q.; Liu, Z.; Ren, K.; Yang, C. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China. Appl. Soil Ecol. 2022, 170, 104292. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, F.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ye, Y.; Chen, M.; Chen, H.; Yang, D.; Li, M.; Jiang, F.; Zhang, X.; Zhang, C. The rhizosphere microbiome and its influence on the accumulation of metabolites in Bletilla striata (Thunb.) Reichb. f. BMC Plant Biol. 2024, 24, 409. [Google Scholar] [CrossRef] [PubMed]
- Belin, B.J.; Busset, N.; Giraud, E.; Molinaro, A.; Silipo, A.; Newman, D.K. Hopanoid lipids: From membranes to plant–bacteria interactions. Nat. Rev. Microbiol. 2018, 16, 304–315. [Google Scholar] [CrossRef]
- Ma, Y.; McCormick, M.K.; Szlavecz, K.; Filley, T.R. Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages. Soil Biol. Biochem. 2019, 134, 90–99. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zhang, Y.; Wang, Y.; Zhang, J.; Luo, X.; Zhang, R. Soil Organic Carbon Stocks and Its Driving Factors Under Different Land-Use Patterns in Semiarid Grasslands of the Loess Plateau, China. Nat. Environ. Pollut. Technol. 2021, 20, 997–1006. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, M. Responses of Soil C, N, and P Stoichiometrical Characteristics, Enzyme Activities and Microbes to Land Use Changes in Southwest China Karst. Forests 2023, 14, 971. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis—Humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, J. The impact of land-use change on the soil bacterial community in the Loess Plateau, China. J. Arid. Environ. 2021, 188, 104469. [Google Scholar] [CrossRef]
- Tian, Q.; Taniguchi, T.; Shi, W.-Y.; Li, G.; Yamanaka, N.; Du, S. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Sci. Rep. 2017, 7, srep45289. [Google Scholar] [CrossRef]
- Kothe, E.; Dang, P.; Yu, X.; Le, H.; Liu, J.; Shen, Z.; Zhao, Z. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS ONE 2017, 12, e0186501. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Pan, G.; Wang, G.; Liu, X.; Zhang, X.; Li, L.; Bian, R.; Cheng, K.; Zheng, J. A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Appl. Soil Ecol. 2017, 111, 94–104. [Google Scholar] [CrossRef]
- Teixeira, L.C.R.S.; Peixoto, R.S.; Cury, J.C.; Sul, W.J.; Pellizari, V.H.; Tiedje, J.; Rosado, A.S. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 2010, 4, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Hou, W.; Liu, J.; Malik, K.; Kong, X.; Wang, L.; Chen, X.; Tang, M.; Zhu, R.; Cheng, C.; et al. Effects of Different Land Use Types and Soil Depths on Soil Mineral Elements, Soil Enzyme Activity, and Fungal Community in Karst Area of Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 3120. [Google Scholar] [CrossRef]
- Bonfante, P.; Venice, F. Mucoromycota: Going to the roots of plant-interacting fungi. Fungal Biol. Rev. 2020, 34, 100–113. [Google Scholar] [CrossRef]
- Bastian, F.; Bouziri, L.; Nicolardot, B.; Ranjard, L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 2009, 41, 262–275. [Google Scholar] [CrossRef]
- Caesar-TonThat, T.; Lenssen, A.W.; Caesar, A.J.; Sainju, U.M.; Gaskin, J.F. Effects of tillage on microbial populations associated to soil aggregation in dryland spring wheat system. Eur. J. Soil Biol. 2010, 46, 119–127. [Google Scholar] [CrossRef]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef]
- Bascompte, J. Networks in ecology. Basic Appl. Ecol. 2007, 8, 485–490. [Google Scholar] [CrossRef]
- Cai, Z.-q.; Zhang, Y.-h.; Yang, C.; Wang, S. Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. Catena 2018, 165, 369–380. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, W.; Wang, J.; Du, N.; Li, Q.; Wei, G. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, Q.; Adamowski, J.F.; Biswas, A.; Cao, J.; Liu, W.; Qin, Y.; Zhu, M. Conversion of grassland to abandoned land and afforested land alters soil bacterial and fungal communities on the Loess Plateau. Appl. Soil Ecol. 2023, 183, 104758. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Tuo, D.; Wang, C.; Fu, B.; Lv, Y.; Liu, G. Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma 2020, 359, 113991. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Stegen, J.C.; Kim, M.; Dong, K.; Adams, J.M.; Lee, Y.K. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 2018, 12, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, K.S.; Craine, J.M.; Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 2012, 18, 1918–1927. [Google Scholar] [CrossRef]
- Durrer, A.; Gumiere, T.; Taketani, R.G.; Costa, D.P.d.; Pereira e Silva, M.d.C.; Andreote, F.D. The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Appl. Soil Ecol. 2017, 110, 12–20. [Google Scholar] [CrossRef]
- Su, B.; Gao, C.; Ji, J.; Zhang, H.; Zhang, Y.; Mouazen, A.M.; Shao, S.; Jiao, H.; Yi, S.; Li, S. Soil bacterial succession with different land uses along a millennial chronosequence derived from the Yangtze River flood plain. Sci. Total Environ. 2024, 908, 168531. [Google Scholar] [CrossRef]
- Sun, L.; Xun, W.; Huang, T.; Zhang, G.; Gao, J.; Ran, W.; Li, D.; Shen, Q.; Zhang, R. Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments. Soil Biol. Biochem. 2016, 96, 207–215. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Xie, X.; Chen, X.; Pu, L.; Zhang, X. Soil microbial succession with soil development since costal reclamation. Catena 2020, 187, 104393. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, H.; Liu, L.; Dou, Y.; An, S. Comparison of soil microbial community between planted woodland and natural grass vegetation on the Loess Plateau. For. Ecol. Manag. 2020, 460, 117817. [Google Scholar] [CrossRef]
Soil Characteristics | Abandoned Land (AL) | Cultivated Land (CL) | Forest Land (FL) | Grassland (GL) | |
---|---|---|---|---|---|
physical | SWC (%) | 11.88 ± 1.33 d | 16.62 ± 0.28 c | 24.17 ± 0.21 b | 27.99 ± 1.09 a |
pH | 7.62 ± 0.02 b | 8.13 ± 0.02 a | 7.29 ± 0.05 c | 7.56 ± 0.06 b | |
BD (g·cm−3) | 1.33 ± 0.02 a | 1.41 ± 0.02 a | 1.01 ± 0.03 b | 1.04 ± 0.06 b | |
chemical | SOM (g·kg−1) | 4.44 ± 0.26 c | 5.85 ± 1.08 c | 15.07 ± 1.45 b | 19.07 ± 0.72 a |
TN (g·kg−1) | 1.22 ± 0.04 c | 1.05 ± 0.08 c | 1.79 ± 0.21 b | 2.67 ± 0.12 a | |
AN (mg·kg−1) | 1.47 ± 0.22 c | 1.28 ± 0.05 c | 3.95 ± 0.67 b | 5.86 ± 1.01 a | |
NN (mg·kg−1) | 2.62 ± 0.23 bc | 2.28 ± 0.08 c | 3.86 ± 0.46 b | 6.97 ± 0.70 a | |
SAN (mg·kg−1) | 85.85 ± 3.65 b | 67.31 ± 9.38 b | 138.07 ± 16.58 a | 164.87 ± 9.43 a | |
TP (g·kg−1) | 0.89 ± 0.01 ab | 0.84 ± 0.02 b | 0.60 ± 0.04 c | 0.94 ± 0.01 a | |
AP (mg·kg−1) | 6.75 ± 0.04 b | 28.36 ± 0.75 a | 3.42 ± 0.13 c | 5.94 ± 0.04 b | |
MBC (mg·kg−1) | 258.32 ± 12.57 c | 433.09 ± 26.09 b | 836.14 ± 57.85 a | 456.66 ± 46.39 b | |
MBN (mg·kg−1) | 28.95 ± 0.43 c | 36.21 ± 1.07 b | 52.02 ± 3.91 a | 37.02 ± 1.48 b | |
MBP (mg·kg−1) | 8.55 ± 0.09 b | 17.77 ± 0.56 a | 17.91 ± 1.05 a | 10.64 ± 0.92 b | |
Enzy | UER mg/(g·d−1) | 10.88 ± 0.18 b | 7.44 ± 0.17 d | 14.43 ± 0.08 a | 9.15 ± 0.06 c |
ALP mg/(g·d−1) | 83.68 ± 0.15 a | 51.02 ± 0.15 d | 80.24 ± 0.62 b | 79.04 ± 0.01 c | |
CAT mg/(g·30 min−1) | 0.75 ± 0.02 b | 0.76 ± 0.03 b | 0.63 ± 0.01 b | 1.31 ± 0.11 a | |
SCL mg/(g·d−1) | 0.12 ± 0.01 a | 0.02 ± 0.00 c | 0.08 ± 0.00 b | 0.12 ± 0.00 a | |
SUC mg/(g·d−1) | 16.04 ± 0.50 a | 4.85 ± 0.75 c | 10.42 ± 1.11 b | 15.18 ± 0.84 a | |
PPO mg/(g·d−1) | 16.54 ± 1.34 a | 5.87 ± 0.10 b | 17.41 ± 1.57 a | 6.98 ± 0.07 b |
AL | CL | FL | GL | ||
---|---|---|---|---|---|
Bacterial | Nodes | 34 | 48 | 48 | 44 |
Links | 49 | 116 | 156 | 126 | |
Average degree | 2.882 | 4.833 | 6.5 | 5.727 | |
Network diameter | 6 | 9 | 10 | 9 | |
Modularity | 0.725 | 0.674 | 0.503 | 0.529 | |
Average clustering coefficient | 0.687 | 0.642 | 0.583 | 0.603 | |
Average path length | 2.446 | 3.994 | 3.419 | 3.341 | |
Positive correlation connection | 61.22% | 50.86% | 51.92% | 53.97% | |
Negative correlation connection | 38.18% | 49.16% | 48.08% | 46.03% | |
Fungi | Nodes | 48 | 46 | 46 | 49 |
Links | 61 | 73 | 74 | 97 | |
Average degree | 2.542 | 3.174 | 3.217 | 3.959 | |
Network diameter | 10 | 12 | 8 | 9 | |
Modularity | 0.771 | 0.707 | 0.584 | 0.723 | |
Average clustering coefficient | 0.545 | 0.514 | 0.577 | 0.646 | |
Average path length | 4.388 | 4.513 | 2.566 | 3.303 | |
Positive correlation connection | 52.46% | 65.75% | 52.7% | 60.82% | |
Negative correlation connection | 47.54% | 34.25% | 47.3% | 39.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, H.; Xu, J.; Yang, H.; Song, J.; Yu, X. Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau. Agriculture 2024, 14, 2106. https://doi.org/10.3390/agriculture14122106
Xiang H, Xu J, Yang H, Song J, Yu X. Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau. Agriculture. 2024; 14(12):2106. https://doi.org/10.3390/agriculture14122106
Chicago/Turabian StyleXiang, Hang, Jingjing Xu, Hang Yang, Jianchao Song, and Xiaojun Yu. 2024. "Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau" Agriculture 14, no. 12: 2106. https://doi.org/10.3390/agriculture14122106
APA StyleXiang, H., Xu, J., Yang, H., Song, J., & Yu, X. (2024). Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau. Agriculture, 14(12), 2106. https://doi.org/10.3390/agriculture14122106