Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition of the Ridge-Planting Strawberry Harvesting Robot
2.2. The Novel End-Effector
2.3. The Self-Developed 6-DOF Manipulator
2.4. Vision Perception System
2.5. Integrated Architecture of the Harvesting Control System
3. Results and Discussion
3.1. Experimental Setup
3.2. Field Harvesting Process
3.3. Experimental Results and Discussion
3.3.1. Harvesting Success Rates Under Different Natural Conditions
3.3.2. Harvesting Speeds with the Single-Arm and Double-Arms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.H.; Zhang, Z.J.; Zhang, K.L.; Yang, L.; Zhang, D.X.; Yu, Y. Research on the visual location method for strawberry picking points under complex conditions based on composite models. J. Sci. Food Agric. 2024, 104, 8566–8579. [Google Scholar] [CrossRef] [PubMed]
- Dimeas, F.; Sako, D.V.; Moulianitis, V.C.; Aspragathos, N.A. Design and fuzzy control of a robotic gripper for efficient strawberry harvesting. Robotica 2015, 33, 1085–1098. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.L.; Yang, L.; Zhang, D.X. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Liu, J.Z. Research progress analysis of robotic harvesting technologies in greenhouse. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–18. [Google Scholar]
- Kondo, N.; Yata, K.; Iida, M.; Shiigi, T.; Monta, M. Development of an end-effector for a tomato cluster harvesting robot. Eng. Agric. Environ. Food 2010, 3, 20–24. [Google Scholar] [CrossRef]
- Hayashi, S.; Yamamoto, S.; Saito, S.; Ochiai, Y.; Kamata, J.; Kurita, M.; Yamamoto, K. Field operation of a movable strawberry-harvesting robot using a travel platform. Jpn. Agric. Res. Q. 2014, 48, 307–316. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.Q.; Gong, C.Y.; Chen, Y.Y.; Yu, H.H. Applications of deep learning for dense scenes analysis in agriculture: A review. Sensors 2020, 20, 1520. [Google Scholar] [CrossRef]
- Fu, L.H.; Wu, F.Y.; Zou, X.J.; Jiang, Y.L.; Lin, J.Q.; Yang, Z.; Duan, J.L. Fast detection of banana bunches and stalks in the natural environment based on deep learning. Comput. Electron. Agric. 2022, 194, 106800. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Xiong, Y.; From, P.J. Symmetry-based 3D shape completion for fruit localisation for harvesting robots. Biosyst. Eng. 2020, 197, 188–202. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Xiong, Y.; Tenorio, G.L.; From, P.J. Fruit localization and environment perception for strawberry harvesting robots. IEEE Access 2019, 7, 147642–147652. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Xiong, Y.; From, P.J. Three-dimensional location methods for the vision system of strawberry-harvesting robots: Development and comparison. Precis. Agric. 2023, 24, 764–782. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhang, W.B.; Yu, J.Y.; He, L.Y.; Chen, J.N.; He, Y. Complete and accurate holly fruits counting using YOLOX object detection. Comput. Electron. Agric. 2022, 198, 107062. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Zong, Z.; Guo, C.L. 3D reconstruction of strawberry based on depth information. Trans. Chin. Soc. Agric. Mach. 2017, 48, 160–165+172. [Google Scholar]
- Luo, L.F.; Zou, X.J.; Cheng, T.C.; Yang, Z.S.; Zhang, C.; Mo, Y.D. Design of virtual test system based on hardware-in-loop for picking robot vision localization and behavior control. Trans. Chin. Soc. Agric. Eng. 2017, 33, 39–46. [Google Scholar]
- Jiang, M.; Song, L.; Wang, Y.F.; Li, Z.Y.; Song, H.B. Fusion of the YOLOv4 network model and visual attention mechanism to detect low-quality young apples in a complex environment. Precis. Agric. 2022, 23, 559–577. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.L.; Liu, H.; Yang, L.; Zhang, D.X. Real-time visual localization of the picking points for a ridge-planting strawberry harvesting robot. IEEE Access 2020, 8, 116556–116568. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Robot. Syst. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, C.; Grimstad, L.; From, P.J.; Isler, V. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agric. 2019, 157, 392–402. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.Y.; From, P.J. An obstacle separation method for robotic picking of fruits in clusters. Comput. Electron. Agric. 2020, 175, 105397. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.Y.; From, P.J. An improved obstacle separation method using deep learning for object detection and tracking in a hybrid visual control loop for fruit picking in clusters. Comput. Electron. Agric. 2021, 191, 106508. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, Z.H.; Ge, Y.Y.; Lin, S.; Chen, L.P.; Xiong, Y. Design and Control of a Novel Six-Degree-of-Freedom Hybrid Robotic Arm. arXiv 2024, arXiv:2407.19826. [Google Scholar]
- Ren, G.Q.; Wu, T.H.; Lin, T.; Yang, L.J.; Chowdhary, G.; Ting, K.C.; Ying, Y.B. Mobile robotics platform for strawberry sensing and harvesting within precision indoor farming systems. J. Field Robot. 2024, 41, 2047–2065. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Piotr, D.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 2018, 386–397. [Google Scholar]
- Zhang, Y.H.; Song, Y.G.; Lu, F.G.; Zhang, D.X.; Yang, L.; Cui, T.; Xie, H.H.; Zhang, K.L. Design and Experiment of Greenhouse Self-Balancing Mobile Robot Based on PR Joint Sensor. Agriculture 2023, 13, 2040. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, K.L.; Yang, L.; Zhang, D.X.; Cui, T.; Yu, Y.; Liu, H. Design and simulation experiment of ridge planting strawberry picking manipulator. Comput. Electron. Agric. 2023, 208, 107690. [Google Scholar] [CrossRef]
Joint Serial Number | Rated Voltage/V | Rated Torque/N·m | Maximum Allowable Torque/N·m | Output Power/w | Rated Power/w | DC Motor Model (Lingkong, China) |
---|---|---|---|---|---|---|
Joint 1 | 24 | 3 | 10 | 10 | 12.5 | M36GXR |
Joint 2 | 24 | 30 | 90 | 9 | 12.5 | M36GXR |
Joint 3 | 24 | 30 | 90 | 9 | 12.5 | M36GXR |
Joint 4 | 24 | 3 | 10 | 6.3 | 7.2 | M28GXR |
Joint 5 | 24 | 25 | 75 | 5.5 | 7.2 | M28GXR |
Joint 6 | 6 | 1.5 | 7.5 | 0.35 | 0.78 | JGA12-N20B |
Growth State | Fruit Number | Success Rate (Success Number of Fruit) in Each Harvesting Process | Harvesting Evaluation | |||
---|---|---|---|---|---|---|
Detection | Cutting- Clamping | Releasing | Damage Rate (Fruit Number) | Harvesting Success Rate (Fruit Number) | ||
A | 213 | 80.28% (171) | 66.20% (141) | 61.97% (132) | 12.68% (27) | 49.30% (105) |
B | 215 | 70.70% (152) | 57.21% (123) | 49.77% (107) | 19.53% (42) | 30.23% (65) |
Growth State | Each Harvesting Process | Failure Reasons | Probability Ratio of Failure Causes/% |
---|---|---|---|
A | Detection | (1), (2) | 42.6; 57.4 |
Cutting-clamping | (3), (4), (5), (6) | 41.2; 10.6; 32.5; 15.7 | |
Releasing | (7), (8) | 34.7; 65.3 | |
B | Detection | (1), (2) | 21.6; 78.4 |
Cutting-clamping | (3), (4), (5), (6) | 7.5; 35.3; 31.7; 25.5 | |
Releasing | (7), (8) | 70.2; 29.8 |
Number of Arms | Ridge No. | Number of Fruits | Total Harvesting Time/s | Single Fruit Harvesting Time/s | Average Harvesting Time/s |
---|---|---|---|---|---|
Single-arm | R1a | 75 | 307.5 | 4.1 | 7.3 |
R2a | 58 | 307.4 | 5.3 | ||
R3a | 32 | 230.4 | 7.2 | ||
R4a | 15 | 189.0 | 12.6 | ||
Double-arms | R1b | 142 | 383.4 | 2.7 | 4.7 |
R2b | 118 | 365.8 | 3.1 | ||
R3b | 74 | 347.8 | 4.7 | ||
R4b | 26 | 210.6 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Xie, H.; Zhang, K.; Wang, Y.; Li, Y.; Zhou, J.; Xu, L. Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot. Agriculture 2024, 14, 2126. https://doi.org/10.3390/agriculture14122126
Yu Y, Xie H, Zhang K, Wang Y, Li Y, Zhou J, Xu L. Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot. Agriculture. 2024; 14(12):2126. https://doi.org/10.3390/agriculture14122126
Chicago/Turabian StyleYu, Yang, Hehe Xie, Kailiang Zhang, Yujie Wang, Yutong Li, Jianmei Zhou, and Lizhang Xu. 2024. "Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot" Agriculture 14, no. 12: 2126. https://doi.org/10.3390/agriculture14122126
APA StyleYu, Y., Xie, H., Zhang, K., Wang, Y., Li, Y., Zhou, J., & Xu, L. (2024). Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot. Agriculture, 14(12), 2126. https://doi.org/10.3390/agriculture14122126