Crop Rotation of Sainfoin on the Longzhong Loess Plateau Has a Positive Effect on Enhancing Soil Carbon Sequestration Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Experimental Design
2.3. Soil Sample Collection and Determination
2.4. Calculation of Soil Carbon Density
2.5. Statistical Analysis
3. Results
3.1. The Differences in Soil Characteristics Under Different Rotation Systems
3.2. The Impact of Different Crop Rotation Methods on the Soil Total Carbon (STCD) and Organic Carbon Density (SOCD)
3.3. The Differences in Soil Stoichiometric Characteristics Under Different Rotation Systems
3.4. Analysis of the Correlation Between Soil Physicochemical Properties and Stoichiometric Characteristics Under Different Rotation Systems
4. Discussion
4.1. The Impact of Different Crop Rotation Methods on Soil Characteristics
4.2. The Impact of Different Crop Rotation Methods on Soil Carbon Density
4.3. The Influence of Different Crop Rotation Methods on the Stoichiometric Characteristics of Soil C, N, and P
4.4. The Correlation Between Soil Characteristics and C, N, and P Stoichiometry Under Different Crop Rotation Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, H.; Xu, J.; Yang, H.; Song, J.; Yu, X. Reduced Soil Quality but Increased Microbial Diversity in Cultivated Land Compared to Other Land-Use Types in the Longzhong Loess Plateau. Agriculture 2024, 14, 2106. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2005, 47, 151–163. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Pang, G.; Han, F. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau. Catena 2013, 101, 11–16. [Google Scholar] [CrossRef]
- Rahman, M.; Wang, Y.; Zhang, K.; Ahmad, B.; Ali, A.; Ahamd, A.; Muhammad, D.; Afzaal, M.; Zhang, Z.; Bohnett, E. Variations in Soil C, N, P Stocks and Stoichiometry with Soil Depth and Forest Types in Qilian Mountains of Northwest China. Front. Environ. Sci. 2022, 10, 882842. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, P.; Sun, S.; Li, X.; Wang, Y.; Luan, X. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China. Water 2017, 9, 429. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Weng, X.; Zhou, Y.; Huo, Y.; Zhang, S.; Liu, L.; Pei, J. Effects of exogenous calcium additions on the ecological stoichiometric characteristics of various organs and soil nutrients and their internal stability in Pinus tabuliformis. Front. Plant. Sci. 2024, 15, 1428011. [Google Scholar] [CrossRef]
- Tong, Y.; Ding, J.; Xiao, M.; Shahbaz, M.; Zhu, Z.; Chen, M.; Kuzyakov, Y.; Deng, Y.; Chen, J.; Ge, T. Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecol. Lett. 2022, 5, 220138. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Han, L.; Yang, J.; Zhao, X.; Qu, J.; Li, L.; Bai, Y.; Yan, D.; Hou, G. Spatial Distribution Characteristics of Soil C:N:P:K Eco-Stoichiometry of Farmland and Grassland in the Agro-Pastoral Ecotone in Inner Mongolia, China. Agronomy 2024, 14, 346. [Google Scholar] [CrossRef]
- Yang, X.; Li, T.; Shao, M.a. Factors controlling deep-profile soil organic carbon and water storage following Robinia pseudoacacia afforestation of the Loess Plateau in China. For. Ecosyst. 2022, 9, 100079. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, M. Responses of Soil C, N, and P Stoichiometrical Characteristics, Enzyme Activities and Microbes to Land Use Changes in Southwest China Karst. Forests 2023, 14, 971. [Google Scholar] [CrossRef]
- Wang, J.-B.; Xie, J.-H.; Li, L.-L.; Adingo, S. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau. J. Integr. Agric. 2023, 22, 1277–1290. [Google Scholar] [CrossRef]
- Li, T.; Zhao, D.; Li, Y.; Wang, Z.; Wen, X.; Liao, Y. Assessment of the effects of integrated rotation-tillage management on wheat productivity in the Loess Plateau region. Eur. J. Agron. 2023, 149, 126906. [Google Scholar] [CrossRef]
- Fang, C.; Song, X.; Ye, J.-S.; Yuan, Z.-Q.; Agathokleous, E.; Feng, Z.; Li, F.-M. Enhanced soil water recovery and crop yield following conversion of 9-year-old leguminous pastures into croplands. Agric. Water Manag. 2023, 279, 108189. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, H.; Wen, P.; Wang, S.; Li, J.; Wang, R.; Wang, X. A suitable rotational conservation tillage system ameliorates soil physical properties and wheat yield: An 11-year in-situ study in a semi-arid agroecosystem. Soil Tillage Res. 2020, 199, 104600. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Sainju, U.M.; Liu, W. Soil Carbon Fractions in Response to Long-Term Crop Rotations in the Loess Plateau of China. Soil Sci. Soc. Am. J. 2017, 81, 503–513. [Google Scholar] [CrossRef]
- Tong, J.; Hu, J.; Lu, Z.; Sun, H.; Yang, X. The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis. J. Geogr. Sci. 2019, 29, 1578–1594. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, X.; Zhu, P.; Huang, M.; Ren, L.; Shao, M.a. Estimating the optimal vegetation coverage for the dominant tree and shrub species over China’s northwest drylands. Sci. China Earth Sci. 2024, 67, 1500–1517. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Wei, C.; Adamowski, J.F.; Liu, Y.; Zhang, Y.; Liu, C.; Zhou, J.; Wang, X.; Zhang, X.; Cao, J. A Comparative Study of Rotation Patterns on Soil Organic Carbon in China’s Arid and Semi-Arid Regions. Agronomy 2020, 10, 160. [Google Scholar] [CrossRef]
- Chamberlain, L.A.; Bolton, M.L.; Cox, M.S.; Suen, G.; Conley, S.P.; Ané, J.-M. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl. Soil Ecol. 2020, 154, 103603. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Sun, Y.; Liu, P.; Zhang, Q.; Wang, X.; Wang, R.; Li, J. Long-term effects of optimized fertilization, tillage and crop rotation on soil fertility, crop yield and economic profit on the Loess Plateau. Eur. J. Agron. 2023, 143, 126731. [Google Scholar] [CrossRef]
- Wu, P.; Zhao, G.; Liu, F.; Ahmad, S.; Fan, T.; Li, S.; Zhang, J.; Dang, Y.; Wang, L.; Wang, S.; et al. Agronomic system for stabilizing wheat yields and enhancing the sustainable utilization of soil: A 12-year in-situ rotation study in a semi-arid agro-ecosystem. J. Clean. Prod. 2021, 329, 129768. [Google Scholar] [CrossRef]
- Shi, M.; Guo, A.; Kang, Y.; Yang, X.; Zhang, W.; Liu, Y.; Zhang, R.; Wang, Y.; Qin, S. Effects of plastic film mulching and legume rotation on soil nutrients and microbial communities in the Loess Plateau of China. Chem. Biol. Technol. Agric. 2023, 10, 38. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Gao, Y.; Zhao, F.; Wang, J. The Nitrogen Cycling Key Functional Genes and Related Microbial Bacterial Community α−Diversity Is Determined by Crop Rotation Plans in the Loess Plateau. Agronomy 2023, 13, 1769. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Res. 2019, 241, 107558. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Z.; Sun, T.; Zhang, F.; Wu, Q.; Du, M.; Sheng, T. Modeling long-term water use and economic returns to optimize alfalfa-corn rotation in the corn belt of northeast China. Field Crops Res. 2022, 276, 108379. [Google Scholar] [CrossRef]
- Xie, M.; Yuan, J.; Liu, S.; Xu, G.; Lu, Y.; Yan, L.; Li, G. Soil Carbon and Nitrogen Pools and Their Storage Characteristics under Different Vegetation Restoration Types on the Loess Plateau of Longzhong, China. Forests 2024, 15, 173. [Google Scholar] [CrossRef]
- He, M.; Ren, J.; Bai, G.; Zhao, P.; Li, C.; Tang, L. Spatial Distribution Patterns of Soil Fertility in Producing Area of Traditional Chinese Medicine of Longxi County, Gansu Province. Chin. J. Soil Sci. 2023, 54, 21–29. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, F.; Yu, L.; Li, Z. Study on nutritional value of red bean grass and alfalfa. Pratacult. Sci. 1988, 5, 31–35. [Google Scholar]
- Wang, Z.; Wang, Z.; Ma, L.; Lv, X.; Meng, Y.; Zhou, Z.J. Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. Eur. J. Agron. 2021, 126, 126267. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Xiong, X.; Wang, S.; Liu, J. Allelopathic Effects of Cinnamomum migao on Seed Germination and Seedling Growth of its Associated Species Liquidambar formosana. Forests 2019, 10, 535. [Google Scholar] [CrossRef]
- Chai, J.; Yu, X.; Xu, C.; Xiao, H.; Zhang, J.; Yang, H.; Pan, T. Effects of yak and Tibetan sheep trampling on soil properties in the northeastern Qinghai-Tibetan Plateau. Appl. Soil Ecol. 2019, 144, 147–154. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Aggarwal, P.; Chakraborty, D.; Pradhan, S.; Garg, R.N.; Singh, R. Division of Agricultural Physics. In Practical Manual on Measurement of Soil Physical Properties; Indian Agricultural Research Institute: New Delhi, India, 2012; p. 62. [Google Scholar]
- Li, Y.; He, G.; Liu, X.; Xu, H.; Ji, T.; Lin, D.; Jiang, J. Distribution Characteristics of Carbon Density in Plant–Soil System of Temperate Steppe and Temperate Desert in the Longzhong Loess Plateau. Agriculture 2024, 14, 177. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, G.; Zhao, B.; Zheng, Z.; He, Y.; Huang, K.; Zhu, J.; Zhang, Y.J. Decadal soil total carbon loss in northern hinterland of Tibetan Plateau. Sci. Total Environ. 2024, 922, 171190. [Google Scholar] [CrossRef]
- Topa, D.; Cara, I.G.; Jităreanu, G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis—Humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Yang, Y.; Zhang, L.; Li, R.; Han, X.; Lin, W. Effects of Different Land Use Patterns on Soil Physicochemical Properties in the Loess Plateau Area. J. Soil Water Conserv. 2024, 38, 192–202. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Wang, Y.; Li, J. Productive Performance and Development Characteristics of Root Systems of 4 Forage Legmume Species in Loess Plateau, China. Acta Agrestia Sin. 2013, 21, 965. [Google Scholar] [CrossRef]
- Mora-Ortiz, M.; Smith, L.M.J. Onobrychis viciifolia; a comprehensive literature review of its history, etymology, taxonomy, genetics, agronomy and botany. Plant Genet. Resour. Charact. Util. 2018, 16, 403–418. [Google Scholar] [CrossRef]
- Clemensen, A.K.; Villalba, J.J.; Rottinghaus, G.E.; Lee, S.T.; Provenza, F.D.; Reeve, J.R. Do plant secondary metabolite-containing forages influence soil processes in pasture systems? Agron. J. 2020, 112, 3744–3757. [Google Scholar] [CrossRef]
- Shen, A.; Shi, Y.; Mi, W.; Yue, S.; She, J.; Zhang, F.; Guo, R.; He, H.; Wu, T.; Li, H.; et al. Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia, China. J. Arid. Land 2024, 16, 725–737. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, W.; Wang, Y.; Cheng, P.; Hou, Y.; Xiong, X.; Du, H.; Yang, L.; Wang, Y. Effects of land use and cultivation time on soil organic and inorganic carbon storage in deep soils. J. Geogr. Sci. 2020, 30, 921–934. [Google Scholar] [CrossRef]
- Deng, R.; Wang, B.; Liu, P.; Liu, D.; XU, J. Effects od Different Lang Use Patterns on Soil Organic Carbon Loss on the Loess Slope. Res. Soil Water Conserv. 2011, 18, 104–107. [Google Scholar]
- Lu, Q.-Q.; Song, Y.-F.; Pan, K.-Q.; Li, Y.; Tang, M.-X.; Zhong, G.-H.; Liu, J. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China. J. Integr. Agric. 2022, 21, 2345–2356. [Google Scholar] [CrossRef]
- Geng, S.; Li, L.; Miao, Y.; Zhang, Y.; Yu, X.; Zhang, D.; Yang, Q.; Zhang, X.; Wang, Y. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops. J. Integr. Agric. 2024, 23, 2446–2457. [Google Scholar] [CrossRef]
- Qin, J.; Kong, H.; Liu, H. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests. J. Northwest A F Univ. (Nat. Sci. Ed.) 2016, 44, 68–82. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.; Bao, W.; Wang, Y.; Zhao, Y. The soil carbon, nitrogen, and phosphorus contents and their stoichiometry under different land uses in loess hilly region. Agric. Res. Arid. Areas 2019, 37, 117–123. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X.; Qiao, Y.; Cao, Y.; Jiao, Y.; Yang, A.; Liu, M.; Ma, L.; Song, M.; Fu, S. Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility: A meta-analysis. For. Ecosyst. 2024, 11, 100192. [Google Scholar] [CrossRef]
- Huo, W.-G.; Chai, X.-F.; Wang, X.-H.; Batchelor, W.D.; Kafle, A.; Feng, G. Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil. J. Integr. Agric. 2022, 21, 3051–3066. [Google Scholar] [CrossRef]
- Yang, W.; Yu, J.; Li, Y.; Jia, B.; Jiang, L.; Yuan, A.; Ma, Y.; Huang, M.; Cao, H.; Liu, J.; et al. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China. J. Integr. Agric. 2024, 23, 2421–2433. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, B.; Wang, X.; Han, F. Ecological stoichiometry characteristics of soil and plant of alfalfa with different growing years on the Loess Plateau. Pratacult. Sci. 2019, 36, 1189–1199. [Google Scholar]
- Lu, S.; Zhou, N.; Cai, Y.; Gou, M.; Xia, M.; Liu, K.; Shan, H. Ecological Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Sediments of the Hyporheic Zone within the Lake Wetland. Earth Sci. 2024. Available online: https://link.cnki.net/urlid/42.1874.P.20240702.1138.006 (accessed on 25 November 2024).
- Wei, Y.; Dang, X.; Wang, J.; Gao, J.; Gao, Y. Response of C:N:P in the plant-soil system and stoichiometric homeostasis of Nitraria tangutorum leaves in the oasis-desert ecotone, Northwest China. J. Arid Land 2021, 13, 934–946. [Google Scholar] [CrossRef]
Year | Month | Average Temperature (°C) | Precipitation (mm) |
---|---|---|---|
2024 | 1 | −3.5 | 0.5 |
2 | −1.2 | 10.4 | |
3 | 6.1 | 27.6 | |
4 | 13 | 63.5 | |
5 | 17.7 | 43.4 | |
6 | 20 | 24.2 | |
7 | 21.8 | 52.9 | |
8 | 22.6 | 69.2 | |
9 | 18.5 | 43.4 | |
10 | 10.6 | 34.9 |
Soil Depth (cm) | Treatment | BD (g/cm3) | TN (g/kg) | TP (g/kg) | TK (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | TC (g/kg) | SOC (g/kg) |
---|---|---|---|---|---|---|---|---|---|---|
0–10 | MA | 1.50 ± 0.06 a | 1.60 ± 0.02 a | 0.50 ± 0.09 a | 3.36 ± 0.20 a | 26.07 ± 0.84 ab | 2.9 ± 0.46 b | 176.42 ± 3.33 a | 21.63 ± 0.59 b | 12.23 ± 0.66 b |
MS | 1.35 ± 0.02 b | 1.82 ± 0.20 a | 0.62 ± 0.01 a | 2.97 ± 0.19 a | 27.13 ± 0.99 a | 1.25 ± 0.07 b | 166.46 ± 8.80 a | 26.44 ± 0.59 a | 14.75 ± 0.70 a | |
MW | 1.26 ± 0.03 b | 1.66 ± 0.10 a | 0.60 ± 0.11 a | 3.3 ± 0.07 a | 21.88 ± 1.93 b | 8.28 ± 0.76 a | 169.85 ± 5.79 a | 17.77 ± 0.49 c | 11.11 ± 0.37 b | |
10–20 | MA | 1.43 ± 0.03 a | 2.86 ± 0.14 a | 0.53 ± 0.16 a | 3.17 ± 0.12 a | 16.55 ± 1.29 b | 1.14 ± 0.15 b | 126.63 ± 12.03 a | 19.50 ± 0.26 b | 8.05 ± 1.08 b |
MS | 1.34 ± 0.02 b | 1.41 ± 0.05 c | 0.44 ± 0.13 a | 3.04 ± 0.23 a | 22.53 ± 0.91 a | 0.87 ± 0.09 b | 133.23 ± 6.66 a | 25.33 ± 1.07 a | 12.67 ± 0.43 a | |
MW | 1.47 ± 0.02 a | 2.00 ± 0.32 b | 0.55 ± 0.06 a | 2.98 ± 0.31 a | 16.91 ± 1.26 b | 3.64 ± 0.94 a | 133.26 ± 6.66 a | 16.13 ± 0.48 c | 10.06 ± 0.44 b | |
20–50 | MA | 1.34 ± 0.01 b | 2.96 ± 0.13 a | 0.45 ± 0.06 b | 3.31 ± 0.29 a | 5.55 ± 0.65 c | 0.67 ± 0.12 b | 113.24 ± 3.35 a | 17.92 ± 0.45 b | 5.71 ± 1.03 b |
MS | 1.27 ± 0.03 b | 1.09 ± 0.08 b | 0.96 ± 0.19 a | 2.97 ± 0.31 a | 16.03 ± 1.10 a | 0.92 ± 0.07 b | 123.16 ± 6.66 a | 23.57 ± 1.49 a | 7.29 ± 1.13 ab | |
MW | 1.47 ± 0.02 a | 0.83 ± 0.11 b | 0.23 ± 0.02 c | 3.04 ± 0.29 a | 11.62 ± 1.66 b | 2.22 ± 0.05 a | 116.59 ± 3.31 a | 15.12 ± 0.30 b | 9.09 ± 0.20 a |
Soil Depth (cm) | Treatment | Soil Total Carbon Density (kg/cm2) | Soil Organic Carbon Density (kg/cm2) |
---|---|---|---|
0–10 | MA | 3.25 ± 0.22 a | 1.83 ± 0.10 a |
MS | 3.57 ± 0.05 a | 1.99 ± 0.10 a | |
MW | 2.23 ± 0.05 b | 1.40 ± 0.01 b | |
10–20 | MA | 2.79 ± 0.06 b | 1.15 ± 0.13 b |
MS | 3.39 ± 0.11 a | 1.70 ± 0.04 a | |
MW | 2.36 ± 0.08 c | 1.47 ± 0.04 a | |
20–50 | MA | 7.20 ± 0.17 b | 2.30 ± 0.43 b |
MS | 8.98 ± 0.33 a | 2.77 ± 0.37 b | |
MW | 6.66 ± 0.21 b | 4.00 ± 0.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, H.; Xu, J.; Wei, S.; Yang, H.; Song, J.; Yu, X. Crop Rotation of Sainfoin on the Longzhong Loess Plateau Has a Positive Effect on Enhancing Soil Carbon Sequestration Potential. Agriculture 2024, 14, 2160. https://doi.org/10.3390/agriculture14122160
Xiang H, Xu J, Wei S, Yang H, Song J, Yu X. Crop Rotation of Sainfoin on the Longzhong Loess Plateau Has a Positive Effect on Enhancing Soil Carbon Sequestration Potential. Agriculture. 2024; 14(12):2160. https://doi.org/10.3390/agriculture14122160
Chicago/Turabian StyleXiang, Hang, Jingjing Xu, Shaochong Wei, Hang Yang, Jianchao Song, and Xiaojun Yu. 2024. "Crop Rotation of Sainfoin on the Longzhong Loess Plateau Has a Positive Effect on Enhancing Soil Carbon Sequestration Potential" Agriculture 14, no. 12: 2160. https://doi.org/10.3390/agriculture14122160
APA StyleXiang, H., Xu, J., Wei, S., Yang, H., Song, J., & Yu, X. (2024). Crop Rotation of Sainfoin on the Longzhong Loess Plateau Has a Positive Effect on Enhancing Soil Carbon Sequestration Potential. Agriculture, 14(12), 2160. https://doi.org/10.3390/agriculture14122160