Characterization and Expression Patterns of Heat Shock Protein 70 Genes from Paracoccus marginatus in Response to Temperature and Insecticide Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Identification of PmHsp70s
2.3. Gene Cloning
2.4. Sequence Analysis and Phylogenetic Tree Construction
2.5. Expression Patterns of PmHsp70s Under Stress
2.5.1. Temperature and Insecticide Treatments
2.5.2. cDNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.6. Statistical Analyses
3. Result
3.1. Identification and Gene Cloning of PmHsp70s
3.2. Sequence Analysis of PmHsp70s
3.3. Phylogenetic Analysis of PmHsp70s
3.4. Expression Analysis of PmHsp70s Under Temperature Stress
3.5. Expression Analysis of PmHsp70s Under Insecticide Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Huey, R.B.; Kearney, M.R.; Krockenberger, A.; Holtum, J.A.; Jess, M.; Williams, S.E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 2015, 60, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.A.; Heinen, R.; Gols, R.; Thakur, M.P. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Glob. Chang. Biol. 2020, 26, 6685–6701. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, C.M.; Terblanche, J.S.; Hoffmann, A.A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 2016, 61, 433–451. [Google Scholar] [CrossRef] [PubMed]
- González-Tokman, D.; Córdoba-Aguilar, A.; Dáttilo, W.; Lira-Noriega, A.; Sánchez-Guillén, R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef]
- Tan, S.Y.; Hong, F.; Ye, C.; Wang, J.J.; Wei, D. Functional characterization of four Hsp70 genes involved in high-temperature tolerance in Aphis aurantii (Hemiptera: Aphididae). Int. J. Biol. Macromol. 2022, 202, 141–149. [Google Scholar] [CrossRef]
- Barman, M.; Samanta, S.; Ahmed, B.; Dey, S.; Chakraborty, S.; Deeksha, M.G.; Dutta, S.; Samanta, A.; Tarafdar, J.; Roy, D. Transcription dynamics of heat-shock proteins (Hsps) and endosymbiont titres in response to thermal stress in whitefly, Bemisia tabaci (Asia-I). Front. Physiol. 2023, 13, 1097459. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Jiang, Y. Expression patterns of heat shock protein genes and antioxidase genes in Apis cerana cerana (Hymenoptera: Apidae) under heat stress. J. Entomol. Sci. 2023, 58, 95–103. [Google Scholar] [CrossRef]
- Tao, Y.D.; Liu, Y.; Wan, X.S.; Xu, J.; Fu, D.Y.; Zhang, J.Z. High and low temperatures differentially affect survival, reproduction, and gene transcription in male and female moths of Spodoptera frugiperda. Insects 2023, 14, 958. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Zhang, J.; Li, Z. Heat shock protein genes affect the rapid cold hardening ability of two invasive tephritids. Insects 2024, 15, 90. [Google Scholar] [CrossRef]
- Yang, C.L.; Meng, J.Y.; Zhou, L.; Zhang, C.Y. Induced heat shock protein 70 confers biological tolerance in UV-B stress–adapted Myzus persicae (Hemiptera). Int. J. Biol. Macromol. 2022, 220, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Liu, X.Y.; Li, B.; Li, M.Y.; Li, S.G.; Liu, S. A heat shock protein protects against oxidative stress induced by lambda-cyhalothrin in the green peach aphid Myzus persicae. Pestic. Biochem. Phys. 2022, 181, 104995. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.Y.; Chen, Z.D.; Jiang, S.D.; Miao, Z.Q.; Wang, J.J.; Wei, D.D. Characterization and expression of heat shock protein 70s in Liposcelis bostrychophila: Insights into their roles in insecticidal stress response. J. Stored Prod. Res. 2024, 106, 102289. [Google Scholar] [CrossRef]
- Mack, L.K.; Attardo, G.M. Heat shock proteins, thermotolerance, and insecticide resistance in mosquitoes. Front. Insect Sci. 2024, 4, 1309941. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jones, W.A. Expression of heat shock protein genes in insect stress responses. Invert. Surviv. J. 2012, 9, 93–101. [Google Scholar]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef]
- Lindquist, S. The heat-shock response. Ann. Rev. Biochem. 1986, 55, 1151–1191. [Google Scholar] [CrossRef]
- Bettencourt, B.R.; Hogan, C.C.; Nimali, M.; Drohan, B.W. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. BMC Biol. 2008, 6, 5. [Google Scholar] [CrossRef]
- Moreirna-de-Sousa, C.; de Souza, R.B.; Fontanetti, C.S. HSP70 as a biomarker: An excellent tool in environmental contamination analysis—A review. Water Air Soil Pollut. 2018, 229, 264. [Google Scholar] [CrossRef]
- Li, H.; Qiao, H.; Liu, Y.; Li, S.; Tan, J.; Hao, D. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). Bull. Entomol. Res. 2020, 111, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Wang, C.; Ban, F.X.; Zhu, D.T.; Liu, S.S.; Wang, X.W. Genome-wide identification and characterization of HSP gene superfamily in whitefly (Bemisia tabaci) and expression profiling analysis under temperature stress. Insect Sci. 2019, 26, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lu, Y. Heat shock protein 70 genes are involved in the thermal tolerance of Hippodamia variegata. Insects 2024, 15, 678. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Deng, X.; Tao, W.; Zhang, Z.; Zhang, H.; Li, Q.; Jiang, C. Sublethal effects of chlorantraniliprole on immunity in Spodoptera frugiperda (Smith)(Lepidoptera: Noctuidae): Promote encapsulation by upregulating a heat shock protein 70 family gene SfHSP68. Pestic. Biochem. Physiol. 2024, 201, 105892. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Q.; Zhang, Y.L.; Wang, X.Q.; Dong, H.; Gao, P.; Jia, L.Y. Characterization of multiple heat shock protein transcripts from Cydia pomonella: Their response to extreme temperature and insecticide exposure. J. Agric. Food Chem. 2016, 64, 4288–4298. [Google Scholar] [CrossRef] [PubMed]
- Seni, A.; Chongtham, S. Papaya mealybug Paracoccus marginatus Williams & Granara De Willink (Hemiptera: Pseudococcidae), a current threat to agriculture—A review. Agric. Rev. 2013, 34, 216–222. [Google Scholar]
- CABI. Crop Protection Compendium; CAB International: Wallingford, UK, 2019; Available online: http://www.cabi.org/cpc (accessed on 10 June 2024).
- Finch, E.A.; Beale, T.; Chellappan, M.; Goergen, G.; Gadratagi, B.G.; Khan, M.A.M.; Rehman, A.; Rwomushana, I.; Sarma, A.K.; Wyckhuys, K.A.G.; et al. The potential global distribution of the papaya mealybug, Paracoccus marginatus, a polyphagous pest. Pest Manag. Sci. 2021, 77, 1361–1370. [Google Scholar] [CrossRef]
- Miller, D.R.; Miller, G.L. Redescription of Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Coccoidea: Pseudococcidae), including descriptions of the immature stages and adult male. Proc. Entomol. Soc. Wash. 2002, 104, 1–23. [Google Scholar]
- Mastoi, M.I.; Azura, A.N.; Muhamad, R.; Idris, A.B.; Ibrahim, Y. Survey of papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae) and its natural enemies in Peninsular Malaysia. Pak. J. Agri. Agril. Engg. Vet. Sci. 2014, 30, 172–186. [Google Scholar]
- Li, J.Y.; Shi, M.Z.; Wang, Q.Y.; Luo, Y.Y.; Zheng, L.Z.; Fu, J.W. Screening and Sensitivity of Pesticides for Controlling New Invasive Pest Paracoccus marginatus on Papaya Plants. Fujian J. Agric. Sci. 2020, 35, 74–79, (In Chinese with English Abstract). [Google Scholar]
- Amutha, M.; Dharajothi, B. Life table and population parameters of Paracoccus marginatus at varying temperatures on cotton. Indian J. Plant Protect. 2016, 44, 24–29. [Google Scholar]
- Amarasekare, K.G.; Chong, J.H.; Epsky, N.D.; Mannion, C.M. Effect of temperature on the life history of the mealybug Paracoccus marginatus (Hemiptera: Pseudococcidae). J. Econ. Entomol. 2008, 101, 1798–1804. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, X.; Wu, C.L.; Wang, Y.R.; Zhao, H.P.; Chen, Q. Influence of different temperatures on protective enzyme activities of Paracoccus marginatus (Hemiptera: Pseudococcidae). Genom. Appl. Biol. 2020, 39, 241–245, (In Chinese with English Abstract). [Google Scholar]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Luca Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, Q.; Wu, C.; Liu, Y.; Han, Z.; Wu, M. Reference gene selection for analyzing the transcription patterns of two fatty acyl-CoA reductase genes from Paracoccus marginatus (Hemiptera: Pseudococcidae). J. Insect Sci. 2021, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Chen, Y.T.; Chen, Y.; Zhao, J.W.; Fu, J.W.; Shi, M.Z. Sublethal effects of lambda-cyhalothrin on the biological characteristics, detoxification enzymes, and genes of the papaya mealybug, Paracoccus marginatus. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- King, A.M.; MacRae, T.H. Insect heat shock proteins during stress and diapause. Annu. Rev. Entomol. 2015, 60, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Li, Q.; Lu, Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. Pest Manag. Sci. 2023, 79, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Que, S.; Liu, X.; Jin, M.; Xin, T.; Zou, Z.; Xia, B. Characteristic and expression of Hsp 70 and Hsp 90 genes from Tyrophagus putrescentiae and their response to thermal stress. Sci. Rep. 2021, 11, 11672. [Google Scholar]
- Li, M.; Lu, W.C.; Feng, H.Z.; He, L. Molecular characterization and expression of three heat shock protein70 genes from the carmine spider mite, Tetranychus cinnabarinus (Boisduval). Insect Mol. Biol. 2010, 18, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Abbas, A.; Gul, H.; Güncan, A.; Hafeez, M.; Gadratagi, B.-G.; Cicero, L.; Ramirez-Romero, R.; Desneux, N.; Li, Z. Insect resilience: Unraveling responses and adaptations to cold temperatures. J. Pest Sci. 2024, 97, 1153–1169. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, X.B.; Yang, H.; Long, G.Y.; Wang, Z.; Jin, D.C. Effects of abiotic stress on the expression of Hsp70 genes in Sogatella furcifera (Horváth). Cell Stress Chaperones 2019, 25, 119–131. [Google Scholar] [CrossRef]
- Fang, S.M.; Zhang, Q.; Zhang, Y.L.; Zhang, G.Z.; Zhang, Z.; Yu, Q.Y. Heat shock protein 70 family in response to multiple abiotic stresses in the silkworm. Insects 2021, 12, 928. [Google Scholar] [CrossRef]
- Liang, P.; Guo, M.; Wang, D.; Li, T.; Li, R.; Li, D.; Cheng, S.; Zhen, C.; Zhang, L. Molecular and functional characterization of heat-shock protein 70 in Aphis gossypii under thermal and xenobiotic stresses. Pestic. Biochem. Phys. 2024, 199, 105774. [Google Scholar] [CrossRef]
Gene | Amino Acids | Molecular Weight (kDa) | Isoelectric Point | Instability Index | Aliphatic Index | Grand Average of Hydropathicity | Subcellular Location |
---|---|---|---|---|---|---|---|
PmHsp70-1 | 693 | 75,113.99 | 5.87 | 40.16 | 82.28 | −0.395 | Mitochondrial matrix |
PmHsp70-2 | 771 | 86,467.32 | 7.92 | 41.28 | 85.14 | −0.451 | Nucleus |
PmHsp70-3 | 653 | 71,683.10 | 5.33 | 35.11 | 80.83 | −0.434 | Cytoplasm |
PmHsp70-4 | 684 | 77,139.05 | 7.10 | 40.40 | 83.71 | −0.462 | Cytoplasm |
PmHsp70-5 | 698 | 78,290.62 | 5.05 | 35.61 | 85.93 | −0.390 | Cytoplasm |
PmHsp70-6 | 686 | 76,761.65 | 5.93 | 35.74 | 86.28 | −0.386 | Cytoplasm |
PmHsp70-7 | 686 | 76,685.21 | 6.29 | 26.08 | 83.16 | −0.451 | Cytoplasm |
PmHsp70-8 | 660 | 72,820.58 | 5.31 | 23.74 | 84.77 | −0.457 | Endoplasmic reticulum |
PmHsp70-9 | 625 | 69,036.93 | 5.68 | 40.35 | 85.68 | −0.439 | Nucleus |
PmHsp70-10 | 653 | 71,741.18 | 5.33 | 34.73 | 81.12 | −0.431 | Cytoplasm |
PmHsp70-11 | 644 | 71,583.82 | 5.50 | 44.12 | 82.86 | −0.496 | Cytoplasm |
PmHsp70-12 | 625 | 69,022.98 | 5.63 | 41.12 | 83.97 | −0.443 | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhao, J.; Shi, M.; Ruan, F.; Fu, J.; Liu, W.; Li, J. Characterization and Expression Patterns of Heat Shock Protein 70 Genes from Paracoccus marginatus in Response to Temperature and Insecticide Stress. Agriculture 2024, 14, 2164. https://doi.org/10.3390/agriculture14122164
Chen Y, Zhao J, Shi M, Ruan F, Fu J, Liu W, Li J. Characterization and Expression Patterns of Heat Shock Protein 70 Genes from Paracoccus marginatus in Response to Temperature and Insecticide Stress. Agriculture. 2024; 14(12):2164. https://doi.org/10.3390/agriculture14122164
Chicago/Turabian StyleChen, Yanting, Jianwei Zhao, Mengzhu Shi, Fei Ruan, Jianwei Fu, Wanxue Liu, and Jianyu Li. 2024. "Characterization and Expression Patterns of Heat Shock Protein 70 Genes from Paracoccus marginatus in Response to Temperature and Insecticide Stress" Agriculture 14, no. 12: 2164. https://doi.org/10.3390/agriculture14122164
APA StyleChen, Y., Zhao, J., Shi, M., Ruan, F., Fu, J., Liu, W., & Li, J. (2024). Characterization and Expression Patterns of Heat Shock Protein 70 Genes from Paracoccus marginatus in Response to Temperature and Insecticide Stress. Agriculture, 14(12), 2164. https://doi.org/10.3390/agriculture14122164