Spatiotemporal Distribution of Soil Thermal Conductivity in Chinese Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Sources
2.3. Soil Thermal Conductivity Model
2.3.1. Introduction to the Model
- (1)
- Johansen model
- (2)
- Lu et al. (2007) [14] model
- (3)
- Lu et al. (2014) [20] model
- (4)
- Nikoosokhan model
- (5)
- Campbell (1985) [19] model
- (6)
- Tarnawski quartz content formula
- (7)
- Peters-Lidard (1998) [17] quartz content recommended value
2.3.2. Statistical Analysis
3. Results
3.1. Characteristics of the Distribution of Physical Properties of Soils on the Loess Plateau
3.1.1. Mechanical Composition of Soil Particles
3.1.2. Soil Bulk Density
3.2. Model Comparison
3.3. Characterization of the Spatial Distribution of Soil Thermal Conductivity
3.4. Analysis of Temporal Variation in Soil Thermal Conductivity
4. Discussion
4.1. Effect of Land Use Type on Thermal Conductivity
4.2. Correlation Analysis of Soil Thermal Conductivity with the Main Influencing Factors
5. Conclusions
- (1)
- In response to the difficulty of obtaining quartz content on a large scale in previous models for predicting soil thermal conductivity, this study compared and analyzed three methods for estimating quartz content applied to the Lu–Ren model and optimized a suitable simulation model for soil thermal conductivity in the Loess Plateau.
- (2)
- Overall, soil thermal conductivity shows a trend of first increasing and then decreasing from northwest to southeast and increasing with increasing soil depth. Soil thermal conductivity fluctuated greatly before 2006 and had slight fluctuations from 2007 to 2021 but, overall, tended toward stability. The ranking of soil thermal conductivity for different land use types is as follows: construction land > arable land > grassland > woodland > bare land.
- (3)
- Soil thermal conductivity in the Loess Plateau is significantly correlated with soil moisture content, bulk density, sand content, silt content, land use type, and altitude; among them, bulk density and altitude are major influencing factors for spatial variation in soil thermal conductivity in the Loess Plateau.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malek, K.; Malek, K.; Khanmohammadi, F. Response of Soil Thermal Conductivity to Various Soil Properties. Int. Commun. Heat Mass Transf. 2021, 127, 105516. [Google Scholar] [CrossRef]
- Guo, Y. One-Dimensional Unsaturated Soil Heat and Moisture Migration Law and Numerical Simulation Study; Taiyuan University of Technology: Taiyuan, China, 2019. [Google Scholar]
- Dong, J.; Li, X.; Han, B.; Tian, R.; Yu, H. A Regional Study of In-Situ Thermal Conductivity of Soil Based on Artificial Neural Network Model. Energy Build. 2022, 257, 111785. [Google Scholar] [CrossRef]
- Orakoglu Firat, M.E. Experimental Study and Modelling of the Thermal Conductivity of Frozen Sandy Soil at Different Water Contents. Measurement 2021, 181, 109586. [Google Scholar] [CrossRef]
- Tuo, Y.; Fei, L.; Yang, L.; Zhang, Y. Simulation Study on Influence of Straw Mulch on Soil Moisture and Heat of Summer Corn Farmland. Trans. Chin. Soc. Agric. Eng. 2007, 23, 27–32. [Google Scholar]
- Jin, J.; Hao, J.; Liu, Z.; Cui, F. Distribution Law of Thermal Conductivity Offrozen-Thawed Sandy Soil in Qinghai-Tibet Plateau Engineering Corridor. J. Railw. Sci. Eng. 2020, 17, 608–614. [Google Scholar]
- Huangfu, H.; Jin, H. Experiment Study of Soil Thermal Properties with Different Water Content. Water Sav. Irrig. 2016, 10, 55–58. [Google Scholar]
- Liu, J.; Li, C.; Yuxiang, L.; Chunlai, Z. Influence of Soil Texture on the Thermal Diffusivity. J. Desert Res. 2010, 30, 577–581. [Google Scholar]
- Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.; Wang, J.; Lv, J. Evaluation of TDR for Quantifying Heat-Pulse-Method-Induced Ice Melting in Frozen Soils. Soil Sci. Soc. Am. J. 2015, 79, 1275–1288. [Google Scholar] [CrossRef]
- Kersten, M.S. Laboratory Research for the Determination of the Thermal Properties of Soils. J. Neurophysiol. 1949, 45, 667–697. [Google Scholar]
- Johansen, O. Thermal Conductivity of Soils; Norwagian University of Science and Technology: Trondheim, Norway, 1975. [Google Scholar]
- Côté, J.; Konrad, J.-M. A Generalized Thermal Conductivity Model for Soils and Construction Materials. Can. Geotech. J. 2005, 42, 443–458. [Google Scholar] [CrossRef]
- Lu, S.; Ren, T.; Gong, Y.; Horton, R. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 2007, 71, 8–14. [Google Scholar] [CrossRef]
- Du, J. Analysis of Influence Factors and Models of Soil Thermal Conductivity; Taiyuan University of Technology: Taiyuan, China, 2020. [Google Scholar]
- Su, L.; Wang, Q.; Wang, S.; Wang, W. Soil Thermal Conductivity Model Based on Soil Physical Basic Parameters. Trans. Chin. Soc. Agric. Eng. 2016, 32, 127–133. [Google Scholar]
- Peters-Lidard, C.D.; Blackburn, E.; Liang, X.; Wood, E.F. The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures. J. Atmos. Sci. 1998, 55, 1209–1224. [Google Scholar] [CrossRef]
- Tarnawski, V.R.; Momose, T.; Leong, W.H. Assessing the Impact of Quartz Content on the Prediction of Soil Thermal Conductivity. Géotechnique 2009, 59, 331–338. [Google Scholar] [CrossRef]
- Campbell, G.S. Predicting the Effect of Temperature on Soil Thermal Conductivity. Soil Sci. 1985, 158, 221–234. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, S.; Horton, R.; Ren, T. An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density. Soil Sci. Soc. Am. J. 2014, 78, 1859–1868. [Google Scholar] [CrossRef]
- Nikoosokhan, S.; Nowamooz, H.; Chazallon, C. Effect of Dry Density, Soil Texture and Time-Spatial Variable Water Content on the Soil Thermal Conductivity. Geomech. Geoengin. 2016, 11, 149–158. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping Paddy Rice Planting Area in Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xia, L.; Sun, Z.; Zhang, T. Analysis of Spatial and Temporal Changes and Driving Forces of Arable Land in the Weibei Dry Plateau Region in China. Sci. Rep. 2023, 13, 20618. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, Y. Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China. Land 2021, 10, 982. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, C. Analysis of Soil Quality Evaluation in the Loess Plateau. Hans J. Soil Sci. 2020, 8, 118–122. [Google Scholar] [CrossRef]
- Xiong, K.; Gui, J.; Xu, H.; Jin, H. Evaluation and Improvement of Thermal Conductivity Model of Room Temperature Soil. Water Sav. Irrig. 2021, 4, 86–91. [Google Scholar]
- Wang, S.; Wang, Q.; Fan, J.; Wang, W. Soil Thermal Properties Determination and Prediction Model Comparison. Trans. Chin. Soc. Agric. Eng. 2012, 28, 78–84. [Google Scholar]
- Zeng, Z.; Fan, L.; Mo, H.; Xu, Y.; Liu, F. Experimental Study of Influence Factors of Soil Thermal Conductivity. Acta Energiae Solaris Sin. 2018, 39, 377–384. [Google Scholar]
- Nikoosokhan, S.; Nowamooz, H.; Chazallon, C. Effects of Dry Density, Soil Texture and Spatio-Temporal Variable Water Content on Soil Thermal Conductivity. Geomech. Geoengin. 2015, 11, 145–158. [Google Scholar]
- Zhao, Z.; Zhang, H.; Shiau, J.; Du, W.; Ke, L.; Wu, F.; Bao, X. Failure Envelopes of Rigid Tripod Pile Foundation under Combined Vertical-Horizontal-Moment Loadings in Clay. Appl. Ocean Res. 2024, 150, 104131. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, C.; Zhang, L.; Gui, H.; Liu, J.; Liu, Z. Predicting and Compensating for Small-Sample Thermal Information Data in Precision Machine Tools: A Spatial-Temporal Interactive Integration Network and Digital Twin System Approach. Appl. Soft Comput. 2024, 161, 111760. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeiml, M.; Pichler, C.; Lackner, R. Model-Based Risk Assessment of Concrete Spalling in Tunnel Linings under Fire Loading. Eng. Struct. 2014, 77, 207–215. [Google Scholar] [CrossRef]
- Wang, W.; Cai, L.; Gong, Y. Research on Influencing Factors and Model Assessment of Soil Conductivitythermal. J. South China Agric. Univ. 2020, 41, 124–132. [Google Scholar]
- Campbell, G.S.; Jungbauer, J.D.; Bidlake, W.R.; Hungerford, R.D. Predicting the Effect of Temperature on Soil Thermal Conductivity. Soil Sci. 1994, 158, 307–313. [Google Scholar] [CrossRef]
- Li, P. Response of Soil Moisture Content to Returning Farmland to Forest (Grass) in Loess Plateau; Northwest Agriculture and Forestry University: Xianyang, China, 2017. [Google Scholar]
- Hu, L. Soil Water Eco-Environment for Vegetation Recovery on the Loess Plateau of China; Northwest Agriculture and Forestry University: Xianyang, China, 2002. [Google Scholar]
Dataset | Time | Resolution | Source |
---|---|---|---|
Soil particle composition | 2018 | 250 m | Machine learning predictions based on global soil profile compilation by the USDA system (https://zenodo.org/records/2525663%22, accessed on 17 May 2022) |
Land use | 2020 | 500 m | United States Geological Survey (https://lpdaac.usgs.gov, accessed on 18 May 2022) |
Soil water content | 2000–2020 | 11,132 m | European Centre for Medium-Range Weather Forecasts (https://www.ecmwf.int, accessed on 19 May 2022) |
Elevation | 2000 | 30 m | SRTM database jointly provided by NASA and the Department of Defense National Mapping Agency (NIMA) (https://srtm.csi.cgiar.org, accessed on 19 May 2022) |
Thermal Conductivity Method | Quartz Content Estimation Method | Combined Model (Abbrev.) |
---|---|---|
Campbell [19] | No | |
Nikoosokhan [26] | No | |
Lu et al. [20] | No | |
Lu et al. [14] | Tarnawski et al. [18] | LT model |
Lu et al. [14] | Peters-Lidard et al. [17], recommend values | LP1 model |
Lu et al. [14] | Peters-Lidard et al. [17], use sand content | LP2 model |
Serial Number | Soil Texture | Quartz Content |
---|---|---|
1 | Sand | 0.92 |
2 | Loamy sand | 0.82 |
3 | Sandy loam | 0.6 |
4 | Sandy clay loam | 0.6 |
5 | Sand clay | 0.52 |
6 | Loam | 0.4 |
7 | Clay loam | 0.35 |
8 | Silt loam | 0.25 |
9 | Clay | 0.25 |
10 | Silty clay | 0.1 |
11 | Silty clay loam | 0.1 |
12 | Silt | 0.1 |
Soil Depth (cm) | Sand Content (%) | Silt Content (%) | Clay Content (%) | Soil Bulk Density (kg·m−3) |
---|---|---|---|---|
0 | 44.70 | 39.10 | 16.20 | 1.32 |
10 | 44.21 | 39.01 | 16.78 | 1.34 |
30 | 43.42 | 38.82 | 17.76 | 1.40 |
60 | 43.22 | 38.58 | 18.20 | 1.44 |
100 | 44.36 | 38.10 | 17.54 | 1.48 |
200 | 45.63 | 37.23 | 17.14 | 1.48 |
Model | RMSE | NRMSE | R2 | RE |
---|---|---|---|---|
Campbell model | 0.22 | 0.14 | 0.77 | 0.21 |
Nikoosokhan model | 0.40 | 0.22 | 0.37 | 0.37 |
Lu Yili model | 0.35 | 0.21 | 0.52 | 0.32 |
LT model | 0.18 | 0.10 | 0.84 | 0.16 |
LP1 model | 0.23 | 0.11 | 0.73 | 0.21 |
LP2 model | 0.24 | 0.11 | 0.75 | 0.22 |
Depth of Soil Layer (cm) | Average (W·m−1·K−1) | Minimum Value (W·m−1·K−1) | Maximum Value (W·m−1·K−1) | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|
0–10 | 1.18 | 0.24 | 1.81 | 0.18 | 15.29 |
10–30 | 1.29 | 0.71 | 1.92 | 0.12 | 9.29 |
30–100 | 1.38 | 0.73 | 2.11 | 0.13 | 9.74 |
100–200 | 1.41 | 0.65 | 2.39 | 0.16 | 11.93 |
Soil Water Content | Bulk Density | Sand Content | Silt Content | Land Use | Altitude | Soil Thermal Conductivity | |
---|---|---|---|---|---|---|---|
Soil water content | 1 | ||||||
Bulk density | −0.64 ** | 1 | |||||
Sand content | −0.47 ** | 0.32 ** | 1 | ||||
Silt content | 0.42 ** | −0.34 ** | −0.95 ** | 1 | |||
Land use | −0.21 ** | 0.51 ** | −0.45 ** | 0.41 ** | 1 | . | |
Altitude | −0.04 | −0.29 * | 0.60 ** | −0.46 ** | −0.67 ** | 1 | |
λ | 0.27 ** | 0.53 ** | 0.11 * | −0.16 ** | 0.26 ** | −0.19 ** | 1 |
Factor Loadings | Principal Components | Rotated Component Matrix | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
Soil water content | 0.48 | −0.71 | 0.13 | −0.84 |
Bulk density | −0.24 | 0.91 | 0.17 | 0.92 |
Sand content | −0.98 | 0.10 | −0.82 | 0.50 |
Silt content | 0.92 | −0.14 | 0.78 | −0.52 |
Land use | 0.56 | 0.74 | 0.84 | 0.43 |
Altitude | −0.70 | −0.51 | −0.86 | −0.17 |
Eigenvalue | 2.90 | 2.17 | ||
Variance | 48.25 | 36.09 | ||
Cumulative contribution rate | 48.25 | 84.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhang, Y.; Tao, W.; Deng, M. Spatiotemporal Distribution of Soil Thermal Conductivity in Chinese Loess Plateau. Agriculture 2024, 14, 2190. https://doi.org/10.3390/agriculture14122190
Xu Y, Zhang Y, Tao W, Deng M. Spatiotemporal Distribution of Soil Thermal Conductivity in Chinese Loess Plateau. Agriculture. 2024; 14(12):2190. https://doi.org/10.3390/agriculture14122190
Chicago/Turabian StyleXu, Yan, Yibo Zhang, Wanghai Tao, and Mingjiang Deng. 2024. "Spatiotemporal Distribution of Soil Thermal Conductivity in Chinese Loess Plateau" Agriculture 14, no. 12: 2190. https://doi.org/10.3390/agriculture14122190
APA StyleXu, Y., Zhang, Y., Tao, W., & Deng, M. (2024). Spatiotemporal Distribution of Soil Thermal Conductivity in Chinese Loess Plateau. Agriculture, 14(12), 2190. https://doi.org/10.3390/agriculture14122190