Accuracy Assessment of Tomato Harvest Working Time Predictions from Panoramic Cultivation Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method of Collecting Panoramic Images of Cultivation Rows
2.1.1. Low-Stage Cultivation
2.1.2. Long-Term Multi-Stage Cultivation
2.2. Prediction of the Harvest Parameters
2.2.1. Method of Estimating Harvestable Fruit
2.2.2. Measurement Methods for Ground Truth Data
2.2.3. Prediction and Accuracy Verification of the Harvest Parameters
3. Results
3.1. Examples of Collected Cultivation Row Panoramic Images
3.2. Effect of Differences in Maturity Criteria on the Accuracy of the Same-Day Prediction
3.3. Differences in Harvesting Efficiency by Workers
3.4. Prediction and Accuracy Verification of Harvest Parameters
3.4.1. Number of Harvested Fruits ()
3.4.2. Harvested Weight ()
3.4.3. Harvest Working Time ()
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bac, C.W.; Van Henten, E.; Hemming, J.; Edan, Y. Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead. J. Field Robot. 2014, 31, 888–911. [Google Scholar] [CrossRef]
- Elkoby, Z.; van’t Ooster, B.; Edan, Y. Simulation Analysis of Sweet Pepper Harvesting Operations. In Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World; Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 441–448. [Google Scholar]
- JGHA. Survey on Large-Scale Facility Horticulture and Plant Factories: Fact-Finding Survey and Case Study; JGHA: Tokyo, Japan, 2024. [Google Scholar]
- Ohyama, K.; Fujioka, J.; Sato, T.; Matsuo, T. System for determining the job status of individual laborers in a large-scale greenhouse. Comput. Electron. Agric. 2023, 206, 107661. [Google Scholar] [CrossRef]
- van’t Ooster, A.; Bontsema, J.; van Henten, E.J.; Hemming, S. GWorkS—A discrete event simulation model on crop handling processes in a mobile rose cultivation system. Biosyst. Eng. 2012, 112, 108–120. [Google Scholar] [CrossRef]
- Harman, H.; Sklar, E.I. Multi-agent task allocation for harvest management. Front. Robot. AI 2022, 9, 864745. [Google Scholar] [CrossRef]
- Ota, T.; Iwasaki, Y.; Nakano, A.; Kuribara, H.; Higashide, T. Development of yield and harvesting time monitoring system for tomato greenhouse Production. Eng. Agric. Environ. Food 2019, 12, 40–47. [Google Scholar] [CrossRef]
- Otuka, A.; Sugawara, K. A labor management application using handheld computers. Agric. Inf. Res. 2003, 12, 95–103. [Google Scholar] [CrossRef]
- Ampatzidis, Y.G.; Whiting, M.D.; Scharf, P.A.; Zhang, Q. Development and evaluation of a novel system for monitoring harvest labor efficiency. Comput. Electron. Agric. 2012, 88, 85–94. [Google Scholar] [CrossRef]
- Ampatzidis, Y.G.; Whiting, M.D.; Liu, B.; Scharf, P.A.; Pierce, F.J. Portable weighing system for monitoring picker efficiency during manual harvest of sweet cherry. Precis. Agric. 2013, 14, 162–171. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Tan, L.; Haley, R.; Whiting, M.D. Cloud-based harvest management information system for hand-harvested specialty crops. Comput. Electron. Agric. 2016, 122, 161–167. [Google Scholar] [CrossRef]
- Saito, T.; Kawasaki, Y.; Ahn, D.H.; Ohyama, A.; Higashide, T. Prediction and Improvement of Yield and Dry Matter Production Based on Modeling and Non-destructive Measurement in Year-round Greenhouse Tomatoes. Hortic. J. 2020, 89, 425–431. [Google Scholar] [CrossRef]
- Maeda, K.; Ahn, D.-H. Estimation of dry matter production and yield prediction in greenhouse cucumber without destructive measurements. Agriculture 2021, 11, 1186. [Google Scholar] [CrossRef]
- Watanabe, T.; Muramatsu, Y.; Homma, M.; Higashide, T.; Ahn, D.H. Development of a Simple Empirical Yield Prediction Model Based on Dry Matter Production in Sweet Pepper. Agriculture 2022, 68, 13–24. [Google Scholar] [CrossRef]
- Gong, L.; Yu, M.; Jiang, S.; Cutsuridis, V.; Pearson, S. Deep learning based prediction on greenhouse crop yield combined TCN and RNN. Sensors 2021, 21, 4537. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, R.; Yin, Y.; Liu, T. Prediction of tomato yield in Chinese-style solar greenhouses based on wavelet neural networks and genetic Algorithms. Information 2021, 12, 336. [Google Scholar] [CrossRef]
- López-Aguilar, K.; Benavides-Mendoza, A.; González-Morales, S.; Juárez-Maldonado, A.; Chiñas-Sánchez, P.; Morelos-Moreno, A. Artificial neural network modeling of greenhouse tomato yield and aerial dry matter. Agriculture 2020, 10, 97. [Google Scholar] [CrossRef]
- Bargoti, S.; Underwood, J.P. Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 2017, 34, 1039–1060. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. Eur. J. Agron. 2020, 115, 126030. [Google Scholar] [CrossRef]
- Hoshi, T.; Sasaki, T.; Tsutsui, H.; Watanabe, T.; Tagawa, F. A daily harvest prediction model of cherry tomatoes by mining from past averaging data and using topological case-based modeling. Comput. Electron. Agric. 2000, 29, 149–160. [Google Scholar] [CrossRef]
- Naito, H.; Shimomoto, K.; Fukatsu, T.; Hosoi, F.; Ota, T. Interoperability analysis of tomato fruit detection models for images taken at different Facilities, Cultivation Methods, and Times of the Day. AgriEngineering 2024, 6, 1827–1846. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2018, arXiv:1703.06870. [Google Scholar] [CrossRef]
- Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooij, M.; Faber, N.; Polder, G.; Wehrens, R. Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning. Front. Plant Sci. 2020, 11, 571299. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Shigematsu, K.; Yamamoto, S.; Kobayashi, K.; Kohno, Y.; Kamata, J.; Kurita, M. Evaluation of a strawberry-harvesting robot in a field test. Biosyst. Eng. 2010, 105, 160–171. [Google Scholar] [CrossRef]
- Naito, H.; Kawasaki, Y.; Hidaka, K.; Higashide, T.; Misumi, M.; Ota, T.; Lee, U.; Takahashi, M.; Hosoi, F.; Nakagawa, J. Effect of air temperature on each fruit growth and ripening stage of strawberry ‘Koiminori’. Int. Agrophys. 2024, 38, 195–202. [Google Scholar] [CrossRef]
- Fujinaga, T.; Yasukawa, S.; Ishii, K. Development of automatic tomato fruit harvesting robot for facility horticulture. J. Robot. Soc. Jpn. 2021, 39, 921–925. [Google Scholar] [CrossRef]
- Takahashi, M.; Murata, K.; Aizawa, M. The research of aged persons’ working capacity and workload in harvesting tomatoes and bud pinching of mum. Agric. Res. 2010, 63, 143–144. [Google Scholar]
- Manzano-Agugliaro, F.; Garcia-Cruz, A. Time study techniques applied to labor management in greenhouse tomato (Solanum lycopersicum L.) cultivation. Agrociencia 2009, 43, 267–277. [Google Scholar]
- Atsumi, T.; Sakuma, H.; Higashiyama, T. On the Labuor Saving of Harvesting for Vegetables in Greenhouse Culture. Jpn. J. Farm Work. Res. 1980, 1980, 1–5. [Google Scholar] [CrossRef]
- Bechar, A.; Yosef, S.; Netanyahu, S.; Edan, Y. Improvement of work methods in tomato greenhouses using simulation. Trans. ASABE 2007, 50, 331–338. [Google Scholar] [CrossRef]
Color | Hue Value |
---|---|
Red | 0 ≤ hue < 40, 300 ≤ hue < 360 |
Turning | 40 ≤ hue < 70 |
Green | 70 ≤ hue < 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naito, H.; Ota, T.; Shimomoto, K.; Hosoi, F.; Fukatsu, T. Accuracy Assessment of Tomato Harvest Working Time Predictions from Panoramic Cultivation Images. Agriculture 2024, 14, 2257. https://doi.org/10.3390/agriculture14122257
Naito H, Ota T, Shimomoto K, Hosoi F, Fukatsu T. Accuracy Assessment of Tomato Harvest Working Time Predictions from Panoramic Cultivation Images. Agriculture. 2024; 14(12):2257. https://doi.org/10.3390/agriculture14122257
Chicago/Turabian StyleNaito, Hiroki, Tomohiko Ota, Kota Shimomoto, Fumiki Hosoi, and Tokihiro Fukatsu. 2024. "Accuracy Assessment of Tomato Harvest Working Time Predictions from Panoramic Cultivation Images" Agriculture 14, no. 12: 2257. https://doi.org/10.3390/agriculture14122257
APA StyleNaito, H., Ota, T., Shimomoto, K., Hosoi, F., & Fukatsu, T. (2024). Accuracy Assessment of Tomato Harvest Working Time Predictions from Panoramic Cultivation Images. Agriculture, 14(12), 2257. https://doi.org/10.3390/agriculture14122257