The Molecular Mechanism of Mycelial Incubation Time Effects on Primordium Formation of Pleurotus tuoliensis Through Transcriptome and Lipidomic Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Library Preparation and RNA-Seq
2.3. Identification of Differentially Expressed Genes (DEGs)
2.4. Reverse Transcription-Quantitative PCR (RT-qPCR) Analysis
2.5. Lipid Metabolomic Analysis
2.6. Statistical Analysis
3. Results
3.1. Incubation Time Affects Primordium Formation
3.2. Transcription of Genes Involved in Lipid Metabolism Significantly Changed During the Incubation Period
3.3. The Lipid Components Changed Significantly During the Incubation Period
3.4. The Effect of Environmental Stimulation on Metabolic Pathways in Mycelia of Various Incubation Days
3.5. Validation of Key DEGs
4. Discussion
4.1. Lipid Metabolism Was Most Active During the Incubation Period
4.2. Lipids Are Components of the Eukaryotic Cellular Membrane and Influence the Mycelial Response to Environmental Stimuli
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Usman, M.; Murtaza, G.; Ditta, A. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A review. Appl. Sci. 2021, 11, 5943. [Google Scholar] [CrossRef]
- Wang, C.L.; Cui, H.Y.; Wang, Y.R.; Wang, Z.F.; Li, Z.J.; Chen, M.H.; Li, F.J. Bidirectional immunomodulatory activities of polysaccharides purified from Pleurotus nebrodensis. Inflammation 2014, 37, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.J.; Jing, L.Y.; Wang, J. A polysaccharide (PNPA) from Pleurotus nebrodensis offers cardiac protection against ischemia-reperfusion injury in rats. Carbohydr. Polym. 2015, 133, 1–7. [Google Scholar] [CrossRef]
- Xu, N.; Gao, Z.; Zhang, J.J.; Jing, H.J.; Li, S.S.; Ren, Z.Z.; Wang, S.X.; Jia, L. Hepatoprotection of enzymatic-extractable mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. Carbohydr. Polym. 2017, 157, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.Z.; Li, J.; Xu, N.; Zhang, J.J.; Song, X.L.; Wang, X.X.; Gao, Z.; Jing, H.J.; Li, S.S.; Zhang, C.; et al. Anti-hyperlipidemic and antioxidant effects of alkali-extractable mycelia polysaccharides by Pleurotus eryngii var. tuolensis. Carbohydr. Polym. 2017, 175, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.W.; Huang, C.Y.; Chen, Q.; Zou, Y.J.; Zhang, J.X. Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genet. Biol. 2012, 49, 15–20. [Google Scholar] [CrossRef]
- Dai, Y.T.; Su, W.Y.; Yang, C.T.; Song, B.; Li, Y.; Fu, Y.P. Development of novel polymorphic EST-SSR markers in Bailinggu (Pleurotus tuoliensis) for crossbreeding. Genes 2017, 8, 325. [Google Scholar] [CrossRef] [PubMed]
- Li, R.R.; Zheng, Q.W.; Lu, J.L.; Zou, Y.; Lin, J.F.; Guo, L.Q.; Ye, S.Q.; Xing, Z.M. Chemical composition and deterioration mechanism of Pleurotus tuoliensis during postharvest storage. Food Chem. 2021, 338, 127731. [Google Scholar] [CrossRef]
- Du, F.; Qu, J.B.; Hu, Q.X.; Yuan, X.F.; Yin, G.H.; Wang, L.; Zou, Y.J. Maximizing the value of Korshinsk peashrub branches by the integration of Pleurotus tuoliensis cultivation and anaerobic digestion of spent mushroom substrate. Renew. Energy 2021, 179, 679–686. [Google Scholar] [CrossRef]
- Xie, C.; Gong, W.; Zhu, Z.; Yan, L.; Hu, Z.; Peng, Y. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage. Genomics 2018, 110, 201–209. [Google Scholar] [CrossRef]
- Liu, W.; Cai, Y.L.; He, P.X.; Chen, L.F.; Bian, Y.B. Comparative transcriptomics reveals potential genes involved in the vegetative growth of Morchella importuna. 3 Biotech 2019, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tong, X.D.; Tian, F.H.; Jia, C.W.; Li, C.T.; Li, Y. Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus). AMB Express 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Ti, N.; Hu, Q.X.; Zou, Y.J.; Ye, D.; Zhang, H.J. A comparative transcriptome analysis reveals physiological maturation properties of mycelia in Pleurotus tuoliensis. Genes 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Im, J.H.; Park, C.H.; Shin, J.H.; Oh, Y.L.; Oh, M.; Paek, N.C.; Park, Y.J. Effects of light on the fruiting body color and differentially expressed genes in Flammulina velutipes. J. Fungi 2024, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.B.; Zhang, Z.F.; Wang, J.Q.; Wang, S.Y.; Yang, J.K.; Xing, X.Y.; Qi, X.J.; Yu, X.D. Transcriptome analysis of genes associated with autolysis of Coprinus comatus. Sci. Rep. 2022, 12, 2476. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.C.; Sun, X.K.; Zhang, M.K.; Wen, Q.; Qiu, L.Y.; Shen, J.W. Identification of up-regulated transcripts during Pleurotus ostreatus primordium stage and characterization of PoALDH1. J. Basic Microbiol. 2018, 58, 1071–1082. [Google Scholar] [CrossRef]
- Hou, Z.H.; Chen, Q.; Zhao, M.R.; Huang, C.Y.; Wu, X.L. Genome-wide characterization of the Zn(II)2Cys6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ 2020, 8, e9336. [Google Scholar] [CrossRef]
- Song, H.Y.; Kim, D.H.; Kim, J.M. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci. Rep. 2018, 8, 8983. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, D.Y.; Park, Y.J.; Jang, M.J. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS ONE 2020, 15, e0230680. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gross, R.W. The foundations and development of lipidomics. J. Lipid Res. 2022, 63, 100164. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, M.; Zhou, L.; Zhang, M.; Liu, J.; Marchioni, E. Identification and differentiation of wide edible mushrooms based on lipidomics profiling combined with principal component analysis. J. Agric. Food Chem. 2021, 69, 9991–10001. [Google Scholar] [CrossRef]
- Yao, J.; Zhou, L.; Hu, Y.; Zhao, M.; Ma, Y.; Liu, J.; Marchioni, E. Combining untargeted lipidomics analysis and chemometrics to identify the edible and poisonous mushrooms (Pleurotus cornucopiae vs. Omphalotus japonicus). J. Agric. Food Chem. 2023, 71, 8220–8229. [Google Scholar] [CrossRef]
- Xie, G.; Chen, M.; Yang, Y.; Xie, Y.; Deng, K.; Xie, L. Comprehensive untargeted lipidomics study of black morel (Morchella sextelata) at different growth stages. Food Chem. 2024, 451, 139431. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.N.; Wu, X.L.; Gao, W.; Zhao, M.R.; Zhang, J.X.; Huang, C.Y. Differential expression patterns of Pleurotus ostreatus catalase genes during developmental stages and under heat stress. Genes 2017, 8, 335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lu, X.; Hu, C.; Li, Y.; Yang, H.; Yan, H.; Fan, J.; Xu, G.; Abnet, C.C.; Qiao, Y. Serum metabolomics for biomarker screening of esophageal squamous cell carcinoma and esophageal squamous dysplasia using gas chromatography-mass spectrometry. ACS Omega 2020, 5, 26402–26412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Ren, A.; Chen, H.; Zhao, M.W.; Shi, L.; Chen, M.J.; Wang, H.; Feng, Z.Y. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. PLoS ONE 2015, 10, e0123025. [Google Scholar] [CrossRef] [PubMed]
- Kuhnlein, R.; Garrido, D.; Rubin, T.; Poidevin, M.; Maroni, B.; Le Rouzic, A.; Parvy, J.-P.; Montagne, J. Fatty acid synthase cooperates with glyoxalase 1 to protect against sugar toxicity. PLoS Genet. 2015, 11, e1004995. [Google Scholar]
- Takagi, K.; Kikkawa, A.; Iwama, R.; Fukuda, R.; Horiuchi, H. Type II phosphatidylserine decarboxylase is crucial for the growth and morphogenesis of the filamentous fungus Aspergillus nidulans. J. Biosci. Bioeng. 2021, 131, 139–146. [Google Scholar] [CrossRef]
- Tang, L.; Chi, H.W.; Li, W.D.; Zhang, L.; Zhang, L.Y.; Chen, L.; Zou, S.S.; Liu, H.X.; Liang, Y.C.; Yu, J.F.; et al. FgPsd2, a phosphatidylserine decarboxylase of Fusarium graminearum, regulates development and virulence. Fungal Genet. Biol. 2021, 146, 103483. [Google Scholar] [CrossRef]
- Heier, C.; Kühnlein, R.P. Triacylglycerol metabolism in Drosophila melanogaster. Genetics 2018, 210, 1163–1184. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.A.; Mashek, D.G. Mammalian triacylglycerol metabolism: Synthesis, lipolysis, and signaling. Chem. Rev. 2011, 111, 6359–6386. [Google Scholar] [CrossRef] [PubMed]
- Howe, A.G.; McMaster, C.R. Regulation of phosphatidylcholine homeostasis by Sec14. Can. J. Physiol. Pharmacol. 2006, 84, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhu, H.; Wang, Y.; Dong, Y.; Du, J.; Yu, Q.; Li, M. The endoplasmic reticulum–plasma membrane tethering protein Ice2 controls lipid droplet size via the regulation of phosphatidylcholine in Candida albicans. J. Fungi 2024, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 2003, 4, 397–407. [Google Scholar] [CrossRef]
- Spiegel, S.; Cuvillier, O.; Edsall, L.; Kohama, T.; Menzeleev, R.; Olivera, A.; Thomas, D.; Tu, Z.; Van Brocklyn, J.; Wang, F. Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. Biochemistry 1998, 63, 69–73. [Google Scholar]
- Luberto, C.; Kraveka, J.M.; Hannun, Y.A. Ceramide regulation of apoptosis versus differentiation: A walk on a fine line. Lessons from neurobiology. Neurochem. Res. 2002, 27, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Handee, W.; Li, X.; Hall, K.W.; Deng, X.; Li, P.; Benning, C.; Williams, B.L.; Kuo, M.H. An energy-independent pro-longevity function of triacylglycerol in Yeast. PLoS Genet. 2016, 12, e1005878. [Google Scholar] [CrossRef]
- Saito, H.; Posas, F. Response to hyperosmotic stress. Genetics 2012, 192, 289–318. [Google Scholar] [CrossRef]
- Tatebayashi, K.; Yamamoto, K.; Nagoya, M.; Takayama, T.; Nishimura, A.; Sakurai, M.; Momma, T.; Saito, H. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat. Commun. 2015, 6, 6975. [Google Scholar] [CrossRef]
- Alonso-Monge, R.; Román, E.; Arana, D.M.; Prieto, D.; Urrialde, V.; Nombela, C.; Pla, J. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet. Biol. 2010, 47, 587–601. [Google Scholar] [CrossRef]
- Gavrias, V.; Andrianopoulos, A.; Gimeno, C.J.; Timberlake, W.E. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol. Microbiol. 1996, 19, 1255–1263. [Google Scholar] [CrossRef]
- León-Ramírez, C.G.; Sánchez-Arreguin, J.A.; Cabrera-Ponce, J.L.; Martínez-Soto, D.; Ortiz-Castellanos, M.L.; Aréchiga-Carvajal, E.T.; Salazar-Chávez, M.F.; Sánchez-Segura, L.; Ruiz-Herrera, J. Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis. Int. Microbiol. 2021, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Pacheco, J.; Alves, R.; Costa-Barbosa, A.; Cerqueira-Rodrigues, B.; Pereira-Silva, P.; Paiva, S.; Silva, S.; Henriques, M.; Pais, C.; Sampaio, P. The role of Candida albicans transcription factor RLM1 in response to carbon adaptation. Front. Microbiol. 2018, 9, 1127. [Google Scholar] [CrossRef]
- Fan, G.L.; Zhao, A.; Chen, L.B.; Yang, J.; Lu, G.D. The function analysis of glycerol kinases genes in the metabolism of carbon source in Magnaporthe oryzae. Genom. Appl. Biol. 2016, 35, 2716–2723. [Google Scholar]
- Cai, Y.; Zhang, Y.; Bao, H.; Chen, J.; Chen, J.; Shen, W. Squalene monooxygenase gene SsCI80130 regulates Sporisorium scitamineum mating/filamentation and pathogenicity. J. Fungi 2022, 8, 470. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jindal, S.; Longchar, B.; Khan, F.; Gupta, V. Overexpression of Artemisia annua sterol C-4 methyl oxidase gene, AaSMO1, enhances total sterols and improves tolerance to dehydration stress in tobacco. Plant Cell Tissue Organ Cult. 2014, 121, 167–181. [Google Scholar] [CrossRef]
- Hoshino, Y.; Gaucher, E.A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2101276118. [Google Scholar] [CrossRef] [PubMed]
Sample | Culture Condition |
---|---|
T1 | Culture at 25 °C for 4 days in the dark |
T2 | Cultured at 25 °C for 4 days in the dark, then cultured at 15 °C with alternate light for 13 days |
T3 | Culture at 25 °C for 6 days in the dark |
T4 | Cultured at 25 °C for 6 days in the dark, then cultured at 15 °C with alternate light for 13 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Huang, C.; Zhang, L.; Gao, W.; Zhao, M. The Molecular Mechanism of Mycelial Incubation Time Effects on Primordium Formation of Pleurotus tuoliensis Through Transcriptome and Lipidomic Analyses. Agriculture 2024, 14, 2277. https://doi.org/10.3390/agriculture14122277
He Q, Huang C, Zhang L, Gao W, Zhao M. The Molecular Mechanism of Mycelial Incubation Time Effects on Primordium Formation of Pleurotus tuoliensis Through Transcriptome and Lipidomic Analyses. Agriculture. 2024; 14(12):2277. https://doi.org/10.3390/agriculture14122277
Chicago/Turabian StyleHe, Qi, Chenyang Huang, Lijiao Zhang, Wei Gao, and Mengran Zhao. 2024. "The Molecular Mechanism of Mycelial Incubation Time Effects on Primordium Formation of Pleurotus tuoliensis Through Transcriptome and Lipidomic Analyses" Agriculture 14, no. 12: 2277. https://doi.org/10.3390/agriculture14122277
APA StyleHe, Q., Huang, C., Zhang, L., Gao, W., & Zhao, M. (2024). The Molecular Mechanism of Mycelial Incubation Time Effects on Primordium Formation of Pleurotus tuoliensis Through Transcriptome and Lipidomic Analyses. Agriculture, 14(12), 2277. https://doi.org/10.3390/agriculture14122277