Agricultural Machinery Movement Trajectory Recognition Method Based on Two-Stage Joint Clustering
Abstract
:1. Introduction
2. Methods
2.1. Overview
2.2. Data Preparation
2.2.1. Data Preprocessing
- (1)
- Data Format Conversion
- (2)
- Duplicated Trajectory Processing
- (3)
- Stop Trajectory Processing
2.2.2. Feature Extraction
2.3. Two-Stage Joint Clustering
2.3.1. Trajectory Clustering Stage (S1)
2.3.2. Trajectory Recognition Stage (S2)
3. Experiments
3.1. Datasets
3.2. Experimental Setup
3.3. Evaluation Metrics
3.4. Results and Analysis
3.4.1. Experiment on Clustering with Different Features
3.4.2. Ablation Experiments
3.4.3. Comparison with Clustering Algorithms
3.4.4. Comparison with Deep Learning Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Ye, X.; Meng, Z.; Zhou, L.; Sun, Z. An Agricultural Machinery Operation Monitoring System Based on IoT. In Proceedings of the 2019 International Conference on Data Science and Information Technology (DSIT 2019); International Association of Applied Science and Engineering: Bloomington, IL, USA, 2019; p. 5. [Google Scholar]
- Wei, W.; Xiao, M.; Duan, W.; Wang, H.; Zhu, Y.; Zhai, C.; Geng, G. Research Progress on Autonomous Operation Technology for Agricultural Equipment in Large Fields. Agriculture 2024, 14, 1473. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Zhou, K.; Sun, R.; Wang, C.; Zhai, W.; Wu, C. Discovering Spatiotemporal Characteristics of the Trans-Regional Harvesting Operation Using Big Data of GNSS Trajectories in China. Comput. Electron. Agric. 2023, 211, 108003. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Li, Y.; Xie, Z.; Xu, Y.; Han, R.; Wu, C. Identifying Working Trajectories of the Wheat Harvester In-Field Based on K-Means Algorithm. Agriculture 2022, 12, 1837. [Google Scholar] [CrossRef]
- Hua, M.; Song, J.; Wang, X.; Zhang, C.; Li, S.; Zhai, C. Research status and prospect of IoT technology for agricultural equipment. Jiangsu Agric. Sci. 2024, 52, 17–27. [Google Scholar]
- Wang, P.; Meng, Z.; Yin, Y.; Fu, W.; Chen, J.; Wei, X. Automatic recognition algorithm of field operation status based on spatial track of agricultural machinery and corresponding experiment. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 56–61. [Google Scholar]
- Xiao, J.; Liu, H.; Wei, X.; Chen, J.; Wang, P.; Meng, Z. Segmentation of agricultural machinery trajectories based on space-time cube. Jiangsu Agric. Sci. 2018, 46, 244–247. [Google Scholar]
- Li, Y.; Zhao, B.; Wang, C.; Xu, M.; Wei, L.; Pang, Z. Land Division Method for Agricultural Machinery Operation Based on DBSCAN and BP_Adaboost. Trans. Chin. Soc. Agric. Mach. 2023, 54, 37–44. [Google Scholar]
- Poteko, J.; Eder, D.; Noack, P.O. Identifying Operation Modes of Agricultural Vehicles Based on GNSS Measurements. Comput. Electron. Agric. 2021, 185, 106105. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Zhang, X.; Jia, J.; Zhou, K.; Wu, C. Identifying Field and Road Modes of Agricultural Machinery Based on GNSS Recordings: A Graph Convolutional Neural Network Approach. Comput. Electron. Agric. 2022, 198, 107082. [Google Scholar] [CrossRef]
- Huang, J.; Wan, C.; Wu, C. Field & Road-CENet: Semantic Segmentation for Agricultural Machinery Trajectory Segmentation. Res. Sq. 2023, Preprint (Version 1). [Google Scholar]
- Chen, Y.; Quan, L.; Zhang, X.; Zhou, K.; Wu, C. Field-Road Classification for GNSS Recordings of Agricultural Machinery Using Pixel-Level Visual Features. Comput. Electron. Agric. 2023, 210, 107937. [Google Scholar] [CrossRef]
- Lacour, S.; Burgun, C.; Perilhon, C.; Descombes, G.; Doyen, V. A Model to Assess Tractor Operational Efficiency from Bench Test Data. J. Terramechanics 2014, 54, 1–18. [Google Scholar] [CrossRef]
- Liu, H.; Meng, Z.; Wang, P.; Wei, X.; Han, Y. Buffer algorithms for operation area measurement based on global navigation satellite system trajectories of agricultural machinery. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 180–184. [Google Scholar]
- Sujatha, R.; Isakki, P. A Study on Crop Yield Forecasting Using Classification Techniques. In Proceedings of the 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016; pp. 1–4. [Google Scholar]
- Bereznicka, J.; Wicki, L. Do operating subsidies increase labour productivity in Polish farms. Stud. Agric. Econ. 2021, 123, 114–121. [Google Scholar]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [Google Scholar] [CrossRef]
- Du, P.; Li, F.; Shao, J. Multi-Agent Reinforcement Learning Clustering Algorithm Based on Silhouette Coefficient. Neurocomputing 2024, 596, 127901. [Google Scholar] [CrossRef]
- Shao, Z. Method for determining sample size in sampling survey. Stat. Decis. 2012, 22, 12–14. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Prelipcean, A.C.; Gidofalvi, G.; Susilo, Y.O. Measures of transport mode segmentation of trajectories. Int. J. Geogr. Inf. Sci. 2016, 30, 1763–1784. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Li, W.; Yan, S.; Jiang, Y.; Zhang, S.; Wang, C. Research on method of self-adaptive determination of DBSCAN algorithm parameters. Comput. Eng. Appl. 2019, 55, 1–7. [Google Scholar]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
Feature | DBI | CHI |
---|---|---|
[(x,y)] | 0.43 | 6264.66 |
[speed] | 0.54 | 3405.15 |
[NeighborPts 1] | 0.38 | 5955.54 |
[(x,y), speed] | 0.62 | 2507.83 |
[(x,y),NeighborPts] | 0.31 | 11,645.21 |
[speed, NeighborPts] | 0.54 | 2643.24 |
[(x,y), speed, NeighborPts] | 0.66 | 2079.35 |
Method | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Runtime (s) |
---|---|---|---|---|---|
DBSCAN | 78.75 | 90.28 | 82.07 | 85.57 | 1.8 |
SGA-DBSCAN | 90.99 | 94.59 | 82.52 | 87.69 | 1531.0 |
K-SGA-DBSCAN | 91.55 | 95.41 | 89.86 | 92.41 | 1064.2 |
Method | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
Mean-Shift | 82.07 (9.48↓) | 90.53 (4.88↓) | 81.78 (8.08↓) | 85.49 (6.92↓) |
OPTICS | 87.16 (4.39↓) | 92.23 (3.18↓) | 85.24 (4.62↓) | 88.18 (4.23↓) |
KANN-DBSCAN | 87.65 (3.90↓) | 93.57 (1.84↓) | 86.68 (3.18↓) | 89.65 (2.76↓) |
K-SGA-DBSCAN | 91.55 | 95.41 | 89.86 | 92.41 |
Method | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
LSTM | 91.62 (0.07↑) | 88.69 (6.72↓) | 88.55 (1.31↓) | 88.62 (3.79↓) |
Transformer | 92.71 (1.16↑) | 89.24 (6.17↓) | 91.56 (1.70↑) | 90.39 (2.02↓) |
K-SGA-DBSCAN | 91.55 | 95.41 | 89.86 | 92.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, H.; Cao, X.; Meng, Z. Agricultural Machinery Movement Trajectory Recognition Method Based on Two-Stage Joint Clustering. Agriculture 2024, 14, 2294. https://doi.org/10.3390/agriculture14122294
Zhang S, Liu H, Cao X, Meng Z. Agricultural Machinery Movement Trajectory Recognition Method Based on Two-Stage Joint Clustering. Agriculture. 2024; 14(12):2294. https://doi.org/10.3390/agriculture14122294
Chicago/Turabian StyleZhang, Shuya, Hui Liu, Xiangchen Cao, and Zhijun Meng. 2024. "Agricultural Machinery Movement Trajectory Recognition Method Based on Two-Stage Joint Clustering" Agriculture 14, no. 12: 2294. https://doi.org/10.3390/agriculture14122294
APA StyleZhang, S., Liu, H., Cao, X., & Meng, Z. (2024). Agricultural Machinery Movement Trajectory Recognition Method Based on Two-Stage Joint Clustering. Agriculture, 14(12), 2294. https://doi.org/10.3390/agriculture14122294