The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics
Abstract
:1. Introduction
2. Background
3. Materials and Methods
- Utilized agricultural area (UAA) (ha);
- Own (unpaid) labor input (Annual Work Unit—AWU);
- The cost of purchasing services per hectare of UAA (euros);
- The cost of purchasing services per Annual Work Unit (AWU) (euros);
- The share of the cost of purchased services in indirect consumption (%);
- The share of crop production in the structure of agricultural production (%).
4. Research Results and Discussion
5. Conclusions
- Agricultural services replace personal labor inputs under conditions of intensive agricultural production. However, when farms are well-equipped technically, they may opt to hire additional labor. This substitution is weaker in moderately and poorly equipped regions, as hired labor cannot fully replace machine labor, which these farms often lack.
- In clusters well-equipped with machinery and equipment, services complement the farms’ own potential, and in less well-equipped clusters, services compensate for deficiencies in this equipment. The results obtained allow us to assume that the level of use of agricultural services is related primarily to the profile of production carried out by farms and the area of agricultural land, followed by the resources of land, capital, and labor.
- Since the analyzed regions differ not only in the characteristics considered in the typology, other factors, often unquantifiable or difficult to quantify, such as different farming traditions in Western European and post-socialist countries, should also be taken into account when formulating conclusions. Also important are prejudices resulting from their different histories, such as the degree of dispersion of land structure and land ownership, and the attitude of farm managers to the work they do (managerial or emotional).
- Due to farming traditions in regions located in former socialist countries with a dispersed land structure and land ownership, and with relatively high employment in agriculture, the use of services may not be very competitive with the use of one’s own, often obsolete and depreciated but still operable, machinery and equipment, despite the lower price of agricultural services than in other regions. This, in turn, indicates the dependence of the level of use of agricultural services on the level of economic development.
- The relatively low productivity of land in Cluster IV regions located in the former German Democratic Republic and Czechoslovakia, which in the past were dominated by large-scale, state-owned farms, is due to a combination of natural, technological, and economic factors. Among these are the inferior soil quality in the eastern German states compared to the western part of Germany and the dependence of the relatively large farms in Cluster IV on hired labor input. Striving to increase productivity by improving technical equipment is also costly, but does not always guarantee high land productivity.
- In Poland and Romania, on the other hand, the use of agricultural services may be underestimated, due to traditions of unregistered, paid or unpaid neighborly assistance provided in exchange for monetary remuneration or an equivalent non-monetary benefit, such as crops or milk, or the provision of undeclared labor on the farm of an informal service provider—usually a colleague or neighbor. However, the scale of this phenomenon is declining over time and its size in practice is impossible to determine precisely.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Region Code | Name of the Region |
---|---|
Cluster I | |
HUN 0764 | Észak-Magyarország |
HUN 0768 | Dunántúl |
HUN 0767 | Alföld |
ESP 0560 | Comunidad Valenciana |
POR 0640 | Alentejo e Algarve |
ESP 0575 | Andalucia |
ROU 0840 | Nord-Est |
ELL 0470 | Thessalia |
ELL 0450 | Makedonia-Thraki |
ELL 0460 | Ipiros-Peloponissos-Nissi Ioniou |
ITA 0241 | Trentino |
ITA 0250 | Liguria |
ESP 0565 | Murcia |
ITA 0320 | Sicilia |
ITA 0311 | Puglia |
ITA 0303 | Calabria |
ESP 0525 | La Rioja |
ROU 0842 | Sud-Muntenia |
ROU 0841 | Sud-Est |
ITA 0312 | Basilicata |
ITA 0281 | Marche |
ROU 0844 | Vest |
ITA 0292 | Abruzzo |
ITA 0301 | Molise |
ITA 0291 | Lazio |
ITA 0302 | Campania |
ELL 0480 | Sterea Ellas-Nissi Egaeou-Kriti |
ESP 0530 | Aragón |
BGR 0836 | Yugoiztochen |
BGR 0833 | Severoiztochen |
Cluster II | |
POR 0650 | Açores e Madeira |
SVE 0730 | Län i norra Sverige |
ESP 0545 | Castilla y León |
ITA 0330 | Sardegna |
ESP 0555 | Castilla-La Mancha |
ESP 0520 | Navarra |
ESP 0500 | Galicia |
ESP 0505 | Asturias |
ESP 0510 | Cantabria |
IRE 0380 | Ireland |
Cluster III | |
ITA 0221 | Valle d’Aosta |
POL 0790 | Wielkopolska and Slask |
POL 0785 | Pomorze and Mazury |
ESP 0570 | Extremadura |
ESP 0550 | Madrid |
POL 0795 | Mazowsze and Podlasie |
ESP 0515 | Pais Vasco |
ROU 0847 | Bucuresti-Ilfov |
ROU 0843 | Sud-Vest-Oltenia |
HRV 0861 | Jadranska Hrvatska (Adriatic Croatia) |
BGR 0834 | Yugozapaden |
ITA 0244 | Friuli-Venezia |
ITA 0243 | Veneto |
ITA 0260 | Emilia-Romagna |
ESP 0535 | Cataluña |
POR 0630 | Ribatejo e Oeste |
DEU 0070 | Rheinland-Pfalz |
ITA 0270 | Toscana |
BGR 0832 | Severen tsentralen |
BGR 0831 | Severozapaden |
ROU 0846 | Centru |
ROU 0845 | Nord-Vest |
SVN 0820 | Slovenia |
POR 0615 | Norte e Centro |
LTU 0775 | Lithuania |
LVA 0770 | Latvia |
ESP 0540 | Islas Baleares |
ITA 0242 | Alto-Adige |
HRV 0862 | Kontinentalna Hrvatska (Continental Croatia) |
ITA 0222 | Piemonte |
POL 0800 | Malopolska and Pogórze |
BGR 0835 | Yuzhen tsentralen |
Cluster IV | |
DEU 0113 | Mecklenburg-Vorpommern |
SVK 0810 | Slovakia |
DEU 0112 | Brandenburg |
DEU 0116 | Thüringen |
DEU 0114 | Sachsen |
DEU 0115 | Sachsen-Anhalt |
CZE0745 | Czech Republic |
Cluster V | |
FRA 0203 | Provence-Alpes-Côte dAzur |
FRA 0201 | Languedoc-Roussillon |
FRA 0182 | Aquitaine |
FRA 0152 | Alsace |
FRA 0121 | Île de France |
FRA 0131 | Champagne-Ardenne |
FRA 0164 | Poitou-Charentes |
FRA 0133 | Haute-Normandie |
FRA 0134 | Centre |
FRA 0132 | Picardie |
ITA 0282 | Umbria |
FRA 0204 | Corse |
FRA 0183 | Midi-Pyrénées |
FRA 0136 | Bourgogne |
EST 0755 | Estonia |
SVE 0710 | Slättbyggdslän |
SUO 0670 | Etelä-Suomi |
SUO 0690 | Pohjanmaa |
DAN 0370 | Denmark |
FRA 0184 | Limousin |
FRA 0193 | Auvergne |
FRA 0151 | Lorraine |
FRA 0153 | Franche-Comté |
SVE 0720 | Skogs- och mellanbygdslän |
DEU 0060 | Hessen |
DEU 0100 | Saarland |
OST 0660 | Austria |
ITA 0230 | Lombardia |
DEU 0080 | Baden-Württemberg |
DEU 0090 | Bayern |
LUX 0350 | Luxembourg |
DEU 0015 | Schleswig-Holstein/Hamburg |
DEU 0030 | Niedersachsen |
SUO 0680 | Sisä-Suomi |
SUO 0700 | Pohjois-Suomi |
DEU 0050 | Nordrhein-Westfalen |
FRA 0163 | Bretagne |
FRA 0162 | Pays de la Loire |
FRA 0135 | Basse-Normandie |
FRA 0192 | Rhônes-Alpes |
FRA 0141 | Nord-Pas-de-Calais |
BEL 0343 | Wallonie |
NED 0360 | The Netherlands |
ESP 0580 | Canarias |
BEL 0341 | Vlaanderen |
References
- Kołodziejczak, M. Zmieniająca Się Natura Usług. Studium Usług Produkcyjnych w Rolnictwie Krajów Unii Europejskiej, 1st ed.; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2019; 197p. [Google Scholar] [CrossRef]
- Kowalczyk, S. Organizacja Usług Produkcyjnych Dla Rolnictwa w Wybranych Krajach; Ośrodek Informacji Centralnej—CINTE: Warszawa, Poland, 1983. [Google Scholar]
- Bell, D. Die Nachindustrielle Gesellschaft, 2nd ed.; Campus Verlag: Frankfurt, Germany, 1989; 392p. [Google Scholar]
- Corsten, H. Betriebswirtschaftslehre der Dienstleistungsunternehmungen, 1st ed.; R. Oldenbourg Verlag: München, Germany, 1990; 224p. [Google Scholar]
- Daszkowska, M. Produkcja, Rynek, Marketing, 1st ed.; Wyd. Nauk. PWN: Warszawa, Poland, 1998; 208p. [Google Scholar]
- Häussermann, H.; Siebel, W. Theorien der Dienstleistungsdesellschaft. In Handbuch Soziale Dienste, 1st ed.; Evers, A., Heinze, R.G., Olk, T., Eds.; VS Verlag für Sozialwissenschaften Springer Fachmedien: Wiesbaden, Germany, 2011; 544p. [Google Scholar]
- Jensen, J.B. Global Trade in Services: Fear, Facts, and Offshoring, 1st ed.; Peterson Institute for International Economics Press: Washington, DC, USA, 2011; 256p. [Google Scholar]
- Flejterski, S.; Klóska, R.; Majchrzak, M. Usługi w teorii ekonomii. In Współczesna Ekonomika Usług, 2nd ed.; Flejterski, S., Panasiuk, A., Perenc, J., Rosa, G., Eds.; Wyd. Nauk. PWN: Warszawa, Poland, 2012; 560p. [Google Scholar]
- Hamm, R. Verbund von Industrie und Dienstleistungen wird enger. Wirtschaftsdienst 2012, 9, 632–639. [Google Scholar] [CrossRef]
- Ghiotto, L.; Echaide, J. Analysis of the Agreement Between the European Union and the Mercosur; Anna Cavazzini MEP, The Greens/EFA: Brussels, Belgium, 2019; 130p, Available online: https://www.annacavazzini.eu/wp-content/uploads/2020/01/Study-on-the-EU-Mercosur-agreement-09.01.2020-1.pdf (accessed on 15 November 2024).
- Regulation (EC) No 138/2004 of the European Parliament and of the Council of 5 December 2003 on the Economic Accounts for Agriculture in the Community (Text with EEA Relevance), Luxembourg. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004R0138 (accessed on 10 July 2024).
- FADN Database. 2024. Available online: https://agridata.ec.europa.eu/extensions/DashboardFarmEconomyFocus/DashboardFarmEconomyFocus.html (accessed on 20 September 2024).
- Lipiński, E. Wstęp do rozważań nad problematyką usług w ekonomii politycznej socjalizmu. In Usługi i Ich Rola Społeczno-Ekonomiczna, 1st ed.; Ginsbert-Gebert, A., Ed.; PWE: Warszawa, Poland, 1965; 245p. [Google Scholar]
- Kotarbiński, T. Traktat o Dobrej Robocie, 1st ed.; Ossolineum: Wrocław, Poland, 1973. [Google Scholar]
- Jastrzębowski, W. Propozycja systematyzacji usług. In Usługi i Ich Rola Społeczno-Ekonomiczna, 1st ed.; Ginsbert-Gebert, A., Ed.; PWE: Warszawa, Poland, 1965; 245p. [Google Scholar]
- Bywalec, C. Usługi w świetle ekonomii politycznej. Folia Oeconomica Cracoviensia 1989, 32, 29–43. [Google Scholar]
- Janoś-Kresło, M. Usługi Społeczne a Zrównoważony Rozwój Regionów, 1st ed.; Monografie i Opracowania no. 554; Oficyna Wydawnicza Szkoły Głównej Handlowej: Warszawa, Poland, 2008; 480p. [Google Scholar]
- Lange, O. Ekonomia Polityczna T. I, 1st ed.; PWN: Warszawa, Poland, 1967; 448p. [Google Scholar]
- Lovelock, C.; Wirtz, J. Services Marketing. People, Technology, Strategy, 7th ed.; Prentice Hall: Boston, MA, USA, 2019; 626p. [Google Scholar]
- Kołodziejczak, M.; Poczta, W. Changes in the use of production services in agriculture in the context of meeting the targets of sustainable agricultural development. In Proceedings of the 2018 VII International Scientific Conference Determinants of Regional Development, Piła, Poland, 12–13 April 2018; pp. 121–139. [Google Scholar] [CrossRef]
- Poppe, K.; Wolfert, S.; Verdouw, C.; Renwick, A. A European perspective on the economics of Big Data. Farm Policy J. 2015, 12, 11–19. [Google Scholar]
- PSZRiŻ [Polskie Stowarzyszenie Zrównoważonego Rolnictwa i Żywności]. Europejski Zielony Ład; Unijna Strategia na Rzecz Bioróżnorodności i Unijna Strategia od Pola do Stołu. 2024. Available online: https://rolnictwozrownowazone.pl/rolnictwo-zrownowazone/wspolna-polityka-rolna-finansowanie/europejski-zielony-lad/ (accessed on 10 March 2024).
- Rada UE. Europejski Zielony Ład. 2024. Available online: https://www.consilium.europa.eu/pl/policies/green-deal/ (accessed on 29 April 2024).
- USDA [United States Department of Agriculture]. Economic and Food Security Impacts of Agricultural Input Reduction Under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies. 2020. Available online: https://www.ers.usda.gov/webdocs/publications/99741/eb-30.pdf?v=2064.4 (accessed on 30 May 2024).
- Gradziuk, P.; Matyka, M.; Poczta, W.; Czerniak, A.; Czubak, W.; Jończyk, K.; Kopiński, J.; Kozyra, J.; Pawlak, K.; Sadowski, A.; et al. Wpływ Europejskiego Zielonego Ładu na polskie rolnictwo; Raporty Polityki Insight. Polityka Insight Sp. z o.o.: Warszawa, Poland, 2021. [Google Scholar]
- EU-Ukraine Deep and Comprehensive Free Trade Area. Available online: https://trade.ec.europa.eu/access-to-markets/en/content/eu-ukraine-deep-and-comprehensive-free-trade-area (accessed on 20 September 2024).
- Pawlak, K.; Sapa, A. Potencjalne skutki utworzenia strefy wolnego handlu UE-MERCOSUR dla handlu rolno-żywnościowego UE. Zesz. Nauk. SGGW Warszawie Probl. Rol. Swiat. 2016, 16, 199–210. [Google Scholar] [CrossRef]
- Kołodziejczak, M. Samowystarczalność żywnościowa państw Unii Europejskiej w latach 2012–2022. Wieś Rol. 2024, 3. In print. [Google Scholar]
- Report on the Impact of European Green Deal from a Sustainable Global Food System Approach. 2021. Available online: https://www.triptolemos.org/wp-content/uploads/2022/04/TRIPTOLEMOS-REPORT-IMPACT-GREEN-DEAL.pdf (accessed on 16 November 2024).
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Sokołowski, A. Metody Stosowane w Data Mining; StatSoft Polska: Kraków, Poland, 2002; Available online: https://media.statsoft.pl/_old_dnn/downloads/metody_stosowane_w_data_mining.pdf (accessed on 9 October 2024).
- Marek, T. Analiza Skupień w Badaniach Empirycznych, Metody SAHN, 1st ed.; Wyd. Nauk. PWN: Warszawa, Poland, 1989; 170p. [Google Scholar]
- Pawlak, K. Analiza i model rozwoju handlu zagranicznego produktami rolno-spożywczymi. In Wpływ Integracji z Unią Europejską na Polską Gospodarkę; Urban, R., Ed.; IERiGŻ-PIB: Warszawa, Poland, 2008; pp. 35–56. [Google Scholar]
- Błażejczyk-Majka, L.; Kala, R. Metody analizy skupień do charakterystyki użytków rolnych wybranych państw Unii Europejskiej. Rocz. Nauk. SERiA 2005, 7, 5–10. [Google Scholar]
- Lance, G.N.; Williams, W.T. A general theory of classificatory sorting strategies. I. Hierarchical systems. Comput. J. 1967, 9, 373–380. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. A general theory of classificatory sorting strategies. II. Clustering systems. Comput. J. 1967, 10, 271–277. [Google Scholar] [CrossRef]
- Basiura, B. Metoda Warda w zastosowaniu klasyfikacji województw Polski z różnymi miarami odległości. Pr. Nauk. Uniw. Ekon. We Wrocławiu Taksonomia 2013, 279, 209–216. [Google Scholar]
- Hartigan, J.A. Representation of similarity matrices by tree. J. Am. Stat. Assoc. 1967, 62, 1140–1158. [Google Scholar] [CrossRef]
- Hartigan, J.A. Clustering Algorithms, 4th ed.; John Wiley & Sons Inc.: Toronto, ON, Canada, 1975; 351p. [Google Scholar]
- Gordon, A.D. A review of hierarchical classification. J. R. Stat. Soc. Ser. A Gen. 1987, 150, 119–137. [Google Scholar] [CrossRef]
- Gordon, A.D. Classification, 2nd ed.; Chapman and Hall/CRC: Washington, DC, USA, 1999; 272p. [Google Scholar]
- Migdał-Najman, K. Ocena jakości wyników grupowania—Przegląd bibliografii. Przegląd Stat. 2011, 3–4, 281–299. [Google Scholar] [CrossRef]
- Florek, K.; Łukasiewicz, J.; Perkal, J.; Steinhaus, H.; Zubrzycki, S. Taksonomia wrocławska. Przegląd Antropol. 1951, 17, 193–210. [Google Scholar]
- Sneath, P.H.A. The application of computers to taxonomy. J. Gen. Microbiol. 1957, 17, 201–226. [Google Scholar] [CrossRef]
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 28, 1409–1438. Available online: https://archive.org/stream/cbarchive_33927_astatisticalmethodforevaluatin1902/astatistical-methodforevaluatin1902#page/n0/mode/2up (accessed on 10 October 2024).
- McQuitty, L.L. Hierarchical linkage analysis for the isolation of types. Educ. Psychol. Meas. 1960, 20, 55–67. [Google Scholar] [CrossRef]
- McQuitty, L.L. Similarity analysis by reciprocal pairs for discrete and continuous data. Educ. Psychol. Meas. 1966, 26, 825–831. [Google Scholar] [CrossRef]
- McQuitty, L.L. Expansion of similarity analysis by reciprocal pairs for discrete and continuous data. Educ. Psychol. Meas. 1967, 27, 253–255. [Google Scholar] [CrossRef]
- Sokal, R.R.; Sneath, P.H.A. Principles of Numerical Taxonomy, 1st ed.; W.H. Freeman & Co.: New York, NY, USA, 1963; 359p. [Google Scholar]
- Gower, J.C. A comparison of some methods of cluster analysis. Biometrics 1967, 23, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D. An algorithm for hierarchical classifications. Biometrics 1969, 25, 165–170. [Google Scholar] [CrossRef]
- Podani, J. New combinatorial clustering methods. Vegetatio 1989, 81, 61–77. [Google Scholar] [CrossRef]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich, 1st ed.; Wyd. Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010; 399p. [Google Scholar]
- Gatnar, E.; Walesiak, M. Analiza Danych Jakościowych i Symbolicznych z Wykorzystaniem Programu R, 1st ed.; Wyd. C.H. Beck: Warszawa, Poland, 2011; 310p. [Google Scholar]
- Stec, M.; Janas, A.; Kuliński, A. Grupowanie państw Unii Europejskiej ze względu na zasoby kapitału ludzkiego i intelektualnego. Nierówności. Społeczne Wzrost Gospod. 2005, 6, 135–146. [Google Scholar]
- Knierim, A.; Labarthe, P.; Laurent, C.; Prager, K.; Kania, J.; Madureira, L.; Ndah, T.H. Pluralism of agricultural advisory service providers—Facts and insights from Europe. J. Rural. Stud. 2017, 55, 45–58. [Google Scholar] [CrossRef]
- Sadowski, A.; Poczta, W.; Szuba-Barańska, E.; Beba, P. Modele gospodarstw rolnych w państwach Unii Europejskiej. Wieś Rol. 2015, 3, 43–62. [Google Scholar] [CrossRef]
- Klikocka, H.; Zakrzewska, A.; Chojnacki, P. Characteristics of Models of Farms in the European Union. Sustainability 2021, 13, 4772. [Google Scholar] [CrossRef]
- Wasserrab, J.; Jarecka, A. Bilans Zjednoczenia. Wschodnie Niemcy Nadal w Tyle za Zachodnimi. 2014. Available online: https://www.dw.com/pl/bilans-zjednoczenia-wschodnie-niemcy-nadal-w-tyle-za-zachodnimi/a-18050534 (accessed on 9 December 2024).
- Ossowska, L.; Janiszewska, D. Regionalne zróżnicowanie rolnictwa Polski, Czech, Słowacji i wschodnich Niemiec na podstawie wybranych cech potencjału produkcyjnego. Zesz. Nauk. SGGW Warszawie—Probl. Rol. Swiat. 2014, 14, 161–169. [Google Scholar] [CrossRef]
- Ladvenicová, J.; Miklovičová, S. The Relationship Between Farm Size and Productivity in Slovakia. Visegr. J. Bioeconomy Sustain. Dev. 2015, 4, 46–50. [Google Scholar] [CrossRef]
- Borychowski, M.; Sapa, A.; Svobodova, E.; Zdrahal, I.; Lategan, F. Small Farms in Poland and Czechia: Development Paths. Probl. Agric. Econ. 2024, 379, 19–48. [Google Scholar] [CrossRef]
- Cochrane, W.W. Farm Prices: Myth and Reality, 1st ed.; University of Minnesota Press: Minneapolis, MN, USA, 1958; 189p. [Google Scholar]
- Lafuente, E.; Leiva, J.C.; Moreno-Gómez, J.; Szerb, L. A Nonparametric Analysis of Competitiveness Efficiency: The Relevance of Firm Size and the Configuration of Competitive Pillars. Bus. Res. Q. 2020, 23, 203–216. [Google Scholar] [CrossRef]
Indicator | Clusters | Total | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | ||
Active indicators (used in the classification process) | |||||||
Utilized agricultural area (UAA) (ha) | 25.7 | 56.1 | 28.1 | 453.9 | 98.3 | 90.5 | 53.2 |
Own (unpaid) labor (AWU) | 0.9 | 1.1 | 1.3 | 0.9 | 1.3 | 1.3 | 1.2 |
Cost of purchasing services per hectare of UAA (euros) | 43.9 | 68.8 | 36.2 | 80.7 | 301.9 | 198.2 | 90.8 |
Cost of purchasing services per AWU (euros) | 834.5 | 2403.3 | 633.3 | 5723.6 | 12,034.2 | 8612.2 | 2063.3 |
Share of cost of purchased services in intermediate consumption (%) | 4.9 | 5.8 | 3.8 | 5.9 | 17.4 | 9.6 | 6.1 |
Share of crop production in the structure of agricultural production (%) | 77.9 | 34.5 | 67.3 | 62.1 | 81.4 | 42.9 | 66.0 |
Inactive indicators (other indicators that characterize the clusters) | |||||||
Cost of purchasing services per farm (euros) | 1289.0 | 3503.0 | 1310.5 | 36,625.0 | 22,772.0 | 16,647.0 | 3503 |
Service intensity of agricultural production (euros/1000 euros of production value) | 30.6 | 132.1 | 32.1 | 76.6 | 128.5 | 163.0 | 66.1 |
Area of leased agricultural land (ha) | 12.8 | 24.8 | 14.5 | 343.6 | 84.6 | 58.3 | 30.1 |
Hired labor input (AWU) | 0.4 | 0.2 | 0.4 | 5.5 | 0.6 | 0.5 | 0.5 |
Machinery, equipment and means of transport (euros) | 18,161.0 | 12,050.0 | 28,190.5 | 401,333.0 | 89,330.5 | 112,851.0 | 39,231 |
Land productivity (euro/ha) | 2329.4 | 1904.3 | 2012.6 | 2059.3 | 2914.4 | 2796.8 | 2338 |
Labor productivity (euros/AWU) | 40,901.4 | 57,885.4 | 41,034.4 | 144,396.8 | 145,143.0 | 132,116.3 | 66,090 |
Share of livestock production in the structure of agricultural production (%) | 22.1 | 65.5 | 32.7 | 37.9 | 18.6 | 57.1 | 34.0 |
Gross value added (euro) | 44,555.0 | 45,948.5 | 41,913.0 | 450,361.0 | 154,714.5 | 115,538.0 | 73,857.0 |
Indicator | Clusters | |||||
---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |
Active indicators (used in the classification process) | ||||||
Utilized agricultural area (UAA) (ha) | −0.8 | 0.1 | −0.7 | 11.6 | 1.3 | 1.1 |
Own (unpaid) labor (AWU) | −1.6 | −0.7 | 0.5 | −1.5 | 0.7 | 0.8 |
Cost of purchasing services per hectare of UAA (euros) | −0.7 | −0.3 | −0.8 | −0.1 | 3.0 | 1.5 |
Cost of purchasing services per AWU (euros) | −0.3 | 0.1 | −0.4 | 1.0 | 2.7 | 1.8 |
Share of cost of purchased services in intermediate consumption (%) | −0.4 | −0.1 | −0.8 | −0.1 | 4.1 | 1.3 |
Share of crop production in the structure of agricultural production (%) | 0.8 | −2.1 | 0.1 | −0.3 | 1.1 | −1.6 |
Inactive indicators (other indicators that characterize the clusters) | ||||||
Cost of purchasing services per farm (euros) | −0.3 | 0.0 | −0.3 | 3.9 | 2.2 | 1.5 |
Service intensity of agricultural production (euros/1000 euros of production value) | −0.7 | 1.2 | −0.6 | 0.2 | 1.2 | 1.8 |
Area of leased agricultural land (ha) | −0.6 | −0.2 | −0.6 | 11.7 | 2.0 | 1.1 |
Hired labor input (AWU) | −0.1 | −1.0 | −0.3 | 16.9 | 0.7 | 0.2 |
Machinery, equipment, and means of transport (euros) | −0.5 | −0.6 | −0.2 | 7.8 | 1.1 | 1.6 |
Land productivity (euro/ha) | 0.0 | −0.5 | −0.4 | −0.3 | 0.7 | 0.6 |
Labor productivity (euros/AWU) | −0.6 | −0.2 | −0.6 | 1.9 | 1.9 | 1.6 |
Share of livestock production in the structure of agricultural production (%) | −0.8 | 2.1 | −0.1 | 0.3 | −1.1 | 1.6 |
Gross value added (euro) | −0.7 | −0.6 | −0.7 | 8.7 | 1.9 | 1.0 |
Cluster | Characteristics | Number of Regions |
---|---|---|
I | With the lowest own labor inputs, small utilized agricultural area (UAA), low cost of purchasing services per hectare of UAA (euros), and high share of crop production in the agricultural production structure | 30 |
II | With the lowest share of crop production in the agricultural production structure and low own (unpaid) labor (AWU) | 10 |
III | With the lowest cost of purchased services per hectare of UAA and per AWU and the lowest share of the cost of purchased services in intermediate consumption | 32 |
IV | With the largest average area of agricultural land, very low own labor input, highest hired labor input, and an average cost of purchased services per AWU | 7 |
V | With a relatively high area of agricultural land, the highest cost of purchased services per hectare of UR, the highest cost of purchased services per AWU, the highest share of purchased services costs in intermediate consumption, and the highest share of crop production in the agricultural production structure | 10 |
VI | With a high cost of purchased services per hectare of UAA, a very high cost of purchased services per AWU a high share of purchased services costs in intermediate consumption, and the lowest share of crop production in the agricultural production structure | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziejczak, M. The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics. Agriculture 2024, 14, 2346. https://doi.org/10.3390/agriculture14122346
Kołodziejczak M. The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics. Agriculture. 2024; 14(12):2346. https://doi.org/10.3390/agriculture14122346
Chicago/Turabian StyleKołodziejczak, Małgorzata. 2024. "The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics" Agriculture 14, no. 12: 2346. https://doi.org/10.3390/agriculture14122346
APA StyleKołodziejczak, M. (2024). The Use of Agricultural Services in European Union Regions Differing in Selected Agricultural Characteristics. Agriculture, 14(12), 2346. https://doi.org/10.3390/agriculture14122346