Exploring the Feasibility of Sorghum Farming in South Africa Using Garrett’s Ranking Technique
Abstract
:1. Introduction
2. Empirical Literature Review
2.1. Theoretical Underpinnings of This Study
2.1.1. Sustainable Livelihoods Framework
2.1.2. Agricultural Innovation Systems Theory
2.1.3. Resilience Theory
3. Materials and Methods
4. Results and Discussion
4.1. Reliability Test
4.2. Demographic Characteristics
4.3. Analytical Results
Practical Implications of the Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Polity. Sorghum Farming Is Poised to Raise Its Share of Farming in Rural KwaZulu-Natal. 2019. Available online: https://www.polity.org.za/article/sorghum-farming-is-poisedto-raise-its-share-of-farming-in-rural-kwazulu-natal-communities-2019-10-21 (accessed on 1 January 2023).
- Gruss, S.M.; Souza, A.; Yang, Y.; Dahlberg, J.; Tuinstra, M.R. Expression of stay-green drought tolerance in dhurrin-free sorghum. Crop Sci. Eng. 2023, 63, 1270–1283. [Google Scholar] [CrossRef]
- Ramatoulaye, F.; Mady, C.; Fallou, S. Production and Use Sorghum: A Literature Review. J. Nutr. Health Food Sci. 2016, 4, 1–4. [Google Scholar]
- Ndlovu, E.; Van Staden, J.; Maphosa, M. Plant stress morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress 2021, 2, 100018. [Google Scholar] [CrossRef]
- The Conversation. 2022, 07 14. Why South Africa Must Reinvigorate Sorghum as a Key Food Before It’s Lost. The South African. Available online: https://www.thesouthafrican.com/news/sorghum-farmingin-south-africa/ (accessed on 7 March 2023).
- Abdelhalim, T.S.; Kamal, N.M.; Hassan, A.B. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench). Natl. Libr. Med. 2019, 7, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Alemu, G.; Haji, J. Economic Efficiency of Sorghum Production for Smallholder farmers in eastern Ethiopia: The case of habro district. J. Econ. Sustain. Dev. 2016, 7, 44–51. [Google Scholar]
- Farmer’s Weekly. A Road Map for Reviving Sorghum Production in SA. Farmer’s Weekly. 24 March 2022. Available online: https://www.farmersweekly.co.za/crops/field-crops/a-road-map-for-revivingsorghum-production-in-sa/ (accessed on 2 March 2023).
- Mwangi, B.; Macharia, I.; Bett, E. Analysis of economic efficiency among smallholder sorghum producers in Kenya. J. Dev. Agric. Econ. 2020, 12, 95–103. [Google Scholar] [CrossRef]
- Baral, N.R.; Dahlberg, J.; Putnam, D.; Mortimer, J.C.; Scown, C.D. Supply Cost and Life-Cycle Greenhouse Gas Footprint of Dry and Ensiled Biomass Sorghum for Biofuel Production. ACS Sustain. Chem. Eng. 2020, 8, 15855–15864. [Google Scholar] [CrossRef]
- Census. 2011. Wikipedia. Available online: https://en.wikipedia.org/wiki/Nyoni,_KwaZulu-Natal (accessed on 1 January 2023).
- Dalton, T.J.; Hodjo, M. Trends in Global Production, Consumption, and Utilization of Sorghum. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer Nature: Singapore, 2020; pp. 3–15. [Google Scholar] [CrossRef]
- Derese, S.A.; Shimelis, H.; Laing, M.; Mengistu, F. The impact of drought on sorghum production, and farmer’s varietal and trait preferences, in the north eastern Ethiopia: Implications for breeding. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2018, 68, 424–436. [Google Scholar] [CrossRef]
- DSI. Study to Establish Market Opportunities for Sorghum in South Africa; Department of Science and Innovation: Pretoria, South Africa, 2021. Available online: https://www.dsti.gov.za/images/Annexure_A_Sorghum_Study_Report_May2021_FINAL.pdf (accessed on 1 January 2023).
- Deribe, Y.; Kassa, E. Value creation and sorghum-based products: What synergetic actions are needed? Cogent Food Agric. 2020, 6, 1722352. [Google Scholar] [CrossRef]
- Available online: https://www.dst.gov.za/images/Annexure_A_Sorghum_Study_Report_May2021_FINAL.pdf (accessed on 28 May 2023).
- Dirk Esterhuizen. The South African Sorghum Market. GAIN. 28 May 2019. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=The%20South%20African%20sorghum%20market_Pretoria_South%20Africa%20-%20Republic%20of_528-2019.pdf (accessed on 28 May 2023).
- Galal, S. Grain Sorghum Production in South Africa by Province in 2019/2020. 6 April 2021. Statista.com. Available online: https://www.statista.com/statistics/1135879/grain-sorghum-production-in-southafrica-by-province/ (accessed on 1 February 2023).
- Eshetu, Z.; Gebre, H.; Lisanework, N. Impacts of climate change on sorghum production in North Eastern Ethopia. Afr. J. Environ. Sci. Technol. 2020, 14, 49–63. [Google Scholar] [CrossRef]
- Hadebe, S.T.; Mabhaudhi, T.; Modi, A.T. Water productivity of selected sorghum genotypes under rainfed conditions. Int. J. Plant Prod. 2020, 14, 259–272. [Google Scholar] [CrossRef]
- Hambali, E.; Rivai, M.; Farobie, O.; Caroko, N.; Marno, S.; Sutanto, A.I. Economic analysis of sorghum plant cultivation as biomass source for 2nd generation biofuel feedstock. IOP Conf. Ser. Earth Environ. Sci. 2018, 209, 012020. [Google Scholar] [CrossRef]
- Ingram, J.S.I.; Gregory, P.J.; Izac, A.-M. The role of agronomic research in climate change and food security policy. Agric. Ecosyst. Environ. 2008, 126, 4–12. [Google Scholar] [CrossRef]
- Kalema, E.P.; Akpo, E.; Muricho, G.; Ringo, J.; Ojiewo, C.O.; Varshney, R.K. Mapping out market drivers of improved variety seed use: The case of sorghum in Tanzania. Heliyon 2022, 8, e08715. [Google Scholar] [CrossRef]
- Kashapov, N.; Nafikov, M.M.; Nigmatzyanov, A.R.; Mingazov, R.A. Innovative Technologies of Garain Sorghum Processing. 2018. Available online: https://www.researchgate.net/publication/328479968_Innovative_technologies_of_grain_sorghum_processing/citation/download (accessed on 1 January 2023).
- Khoza, T.; Senyolo, G.; Mmbengwa, V.; Soundy, P. Socio-economic factors influencing smallholder farmers’ decision to participate in agro-processing industry in Gauteng province, South Africa. Cogent Soc. Sci. 2019, 5, 1664193. [Google Scholar] [CrossRef]
- Marinda Louw. Sorghum in South Africa: South African Indigenous Grains. South Africa.co.za. 2022. Available online: https://southafrica.co.za/sorghum-in-south-africa.html (accessed on 2 February 2024).
- Mastrorilli, M.; Katerji, N.; Rana, G. Productivity and water use efficiency of sweet sorghum as affected by water deficit occuring at different vegetative growth stages. Eur. J. Agron. 1999, 11, 207–215. [Google Scholar] [CrossRef]
- Groenewald, J.A.; Gundidza, M.B.; Maiwashe, A.N.; Mmbengwa, V.M.; Ramukumba, T.; Van Schalkwyk, H.D. Analysis of the socio-economic factors that contribute to land and agrarian reform which initiated and supported small, micro, medium farming. J. Bus. Manag. 2012, 6, 7158–7169. [Google Scholar] [CrossRef]
- McCary, C.; Vyas, D.; Faciola, A.; Ferraretto, L. Graduate Student Literature Review: Current perspectives on whole-plant sorghum silage production and utilization by lactating dairy cows. J. Dairy Sci. 2020, 103, 5783–5790. [Google Scholar] [CrossRef]
- McGarth, R.G. Seeing Around Corners: How to Spot Inflection Points in Business Before They Happen; Mariner books: Boston, MA, USA, 2019. [Google Scholar]
- Meza, I.; Rezaei, E.E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef]
- Mohammed, A.; Misganaw, A. Modeling future climate change impacts on sorghum (Sorghum bicolor) production with best management options in Amhara Region, Ethiopia. CABI Agric. Biosci. 2022, 3, 22. [Google Scholar] [CrossRef]
- Muranga, B.K. Determinants of Competitiveness of Small and Medium Agro Processing Firms in Kenya. Ph.D. Thesis, Jomo Kenyata University of Agriculture and Technology, Juja, Kenya, 2020. [Google Scholar]
- Pereira, L.M. Follow the ‘Ting: Sorghum in South Africa. Food Cult. Soc. 2021, 26, 116–144. [Google Scholar] [CrossRef]
- Musara, J.P.; Musemwa, L.; Mutenje, M.; Mushunje, A.; Pfukwa, C. Market participation and marketing channelpreferences by small scale sorghum farmers insemi-arid Zimbabwe. Agrekon 2018, 57, 64–77. [Google Scholar] [CrossRef]
- Mushtaq, S. Managing climate risks through transformational adaptation: Economic and policy implications for key production regions in. Clim. Risk Manag. 2018, 19, 48–60. [Google Scholar] [CrossRef]
- Nxele, X.; Klein, A.; Ndimba, B. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S. Afr. J. Bot. 2017, 108, 261–266. [Google Scholar] [CrossRef]
- Pingali, P.R.; Deevi, K.C.; Birthal, P.S. Enabling Markets, Trade and Policies for Enhancing Sorghum Uptake. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Singapore, 2021; Available online: https://link.springer.com/chapter/10.1007/978-981-15-8249-3_2#citeas (accessed on 3 February 2023).
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uni, D.; Geleta, M. Sorghum in dryland: Morphological, physiological, and molecular responses of sorghum under drought stress. Planta 2022, 255, 20. [Google Scholar] [CrossRef]
- Pontieri, P.; Mennini, F.S.; Magni, D.; Fiano, F.; Scuotto, V.; Papa, A.; Aletta, M.; Del Giudice, L. Sustainable open innovation for the agri-food system: Sorghum as healthy food to deal with environmental challenges. Emerald Insight 2021, 124, 2649–2672. [Google Scholar] [CrossRef]
- Statistics South Africa. Quarterly Labour Force Survey, Quarter 1; Pretoria, South Africa: Statistics South Africa, 2023. Available online: https://www.statssa.gov.za (accessed on 3 February 2023).
- SAGov. Agriculture, Forestry and Fisheries on Smallholder Horticulture Empowerment and Promotion Approach. South African Government. 2019. Available online: https://www.gov.za/ (accessed on 3 February 2023).
- SAGov. Agriculture, Land Reform and Rural Development. South African Government. 2022. Available online: www.gov.za (accessed on 3 February 2023).
- Sanders, J.H.; Ouendeba, B.; Ndoye, A.; Témé, N.; Traore, S. Economics of Increasing Sorghum Productivity in Sub-Saharan Africa: The Mali Case. In Sorghum; Humana Press: New York, NY, USA, 2019; pp. 223–243. [Google Scholar] [CrossRef]
- Stott, D.; Lee, E.; Nichols, E. Feasibility Study of Small/Medium Farm Product Distribution System in the Lower Mainland. Real Estate Foundation. 2014. Available online: www.refbc.com (accessed on 3 February 2023).
- Syuryawati; Faesal; Aqil, M. Sorghum plants with ratoon cultivation increase production and income. IOP Conf. Ser. Earth Environ. Sci. 2021, 911, 012077. [Google Scholar] [CrossRef]
- Teferra, T.F.; Awika, J.M. Sorghum as a Healthy Global Food Security Crop: Opportunities and Challenges. Cereal Foods World 2019, 64, 5–20. [Google Scholar] [CrossRef]
- Rooney, W. (Ed.) Sorghum cultivation and improvement in West and Central Africa. In Achieving Sustainable Cultivation of Sorghum Volume 2: Sorghum Utilization Around the World; Burleigh Dodds Science Publishing Limited: Sawston, UK, 2018; pp. 1–26. [Google Scholar]
- World Meteorological Organisation. State of the Climate in Africa; World Meteorological Organisation: Geneva, Switzerland, 2019; Available online: https://library.wmo.int/doc_num.php?explnum_id=10421 (accessed on 12 August 2022).
- Zhao, Z.-Y.; Dahlberg, J. Sorghum: Methods and Protocols; Methods in Molecular Biology; Humana: New York, NY, USA, 2019; Volume 1931. [Google Scholar]
- Yang, M.; Wang, G. Heat stress to jeopardize crop production in the US Corn Belt based on downscaled CMIP5 projections. Agric. Syst. 2023, 211, 103746. [Google Scholar] [CrossRef]
- Taylor, R.A.J.; Herms, D.A.; Cardina, J.; Moore, R.H. Climate Change and Pest Management: Unanticipated Consequences of Trophic Dislocation. Agronomy 2018, 8, 7. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Schnitkey, G.D.; DeLucia, E.; Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 2019, 25, 2325–2337. [Google Scholar] [CrossRef]
- Popovici, R.; Ranjan, P.; Bernard, M.; Usher, E.M.; Johnsoninda, K.; Prokopy, S. The Social Factors Influencing Cover Crop Adoption in the Midwest: A Controlled Comparison. Environ. Manag. 2023, 72, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Koutsos, T.M.; Menexes, G.C.; Mamolos, A.P. The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs. Sustainability 2021, 13, 2362. [Google Scholar] [CrossRef]
- Ping, J.L.; Green, C.J.; Zartman, R.E.; Bronson, K.F. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crops Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
Marketing Year | Sorghum Meal | Malt | Total Human Consumption | Animal Feed | Others | Total |
---|---|---|---|---|---|---|
1000 tons | ||||||
2008/09 | 92.3 | 91.9 | 184.2 | 7.9 | 11.0 | 203.1 |
2009/10 | 100.3 | 82.0 | 182.3 | 8.6 | 13.4 | 204.3 |
2010/11 | 100.9 | 81.3 | 182.2 | 7.1 | 11.1 | 200.4 |
2011/12 | 88.4 | 69.4 | 157.8 | 5.6 | 8.5 | 171.9 |
2012/13 | 95.7 | 69.0 | 164.7 | 5.1 | 8.0 | 177.8 |
2013/14 | 90.3 | 62.2 | 152.6 | 6.8 | 7.0 | 166.4 |
2014/15 | 88.0 | 61.4 | 149.4 | 10.4 | 5.2 | 165.0 |
2015/16 | 97.9 | 62.7 | 160.6 | 9.7 | 1.9 | 172.2 |
2016/17 | 92.7 | 60.1 | 152.8 | 8.6 | 3.9 | 165.3 |
2017/18 | 87.7 | 56.3 | 144.1 | 10.7 | 1.8 | 156.6 |
2018/19 | 87.5 | 55.5 | 143.0 | 11.0 | 2.0 | 156.0 |
2019/2020 (Forecast) | 87.0 | 55.0 | 142.0 | 11.0 | 2.0 | 155.0 |
Rank | Computation of Percentage Score | Percentage Position | Garrett Table | ||
---|---|---|---|---|---|
1 | 0.5 | 0.5 | 100 | 7.1 | 79 |
2 | 0.5 | 1.5 | 100 | 21.4 | 66 |
3 | 0.5 | 2.5 | 100 | 35.7 | 57 |
4 | 0.5 | 3.5 | 100 | 50.0 | 50 |
5 | 0.5 | 4.5 | 100 | 64.3 | 43 |
6 | 0.5 | 5.5 | 100 | 78.6 | 34 |
7 | 0.5 | 6.5 | 100 | 92.9 | 22 |
Factors | Rank | Total Respondents | Total Score | Mean | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||
Edaphic factors | 75 | 31 | 25 | 4 | 7 | 5 | 3 | 150 | 10,133 | 67.55 | 1 |
Climatic factors | 90 | 12 | 16 | 9 | 13 | 3 | 7 | 150 | 10,079 | 67.19 | 2 |
Topographical factors | 56 | 2 | 11 | 6 | 30 | 17 | 28 | 150 | 7967 | 53.11 | 5 |
Pests and diseases | 73 | 39 | 6 | 12 | 7 | 2 | 11 | 150 | 9894 | 65.96 | 3 |
Striga infestation | 34 | 5 | 18 | 23 | 11 | 14 | 45 | 150 | 7131 | 47.54 | 6 |
Birds’ infestation | 15 | 9 | 12 | 8 | 27 | 7 | 72 | 150 | 5846 | 38.97 | 7 |
Irrigation water | 38 | 22 | 20 | 16 | 14 | 13 | 27 | 150 | 8032 | 53.55 | 4 |
Factors | Rank | Total Respondents | Total Score | Mean | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||
Volatile markets | 97 | 45 | 27 | 22 | 24 | 19 | 13 | 150 | 15,236 | 101.57 | 1 |
Social demographics | 62 | 21 | 31 | 10 | 17 | 3 | 6 | 150 | 9516 | 63.44 | 4 |
Climate change | 24 | 32 | 9 | 28 | 25 | 18 | 14 | 150 | 7916 | 52.77 | 7 |
Drought-resistant varieties | 86 | 14 | 2 | 12 | 17 | 11 | 8 | 150 | 9713 | 64.75 | 3 |
Technological advances | 65 | 23 | 18 | 4 | 19 | 5 | 16 | 150 | 9218 | 61.45 | 5 |
Information transfer and education | 71 | 27 | 14 | 20 | 7 | 2 | 9 | 150 | 9756 | 65.04 | 2 |
Infrastructure network | 56 | 16 | 31 | 18 | 11 | 14 | 4 | 150 | 9184 | 61.23 | 6 |
Factors | Rank | Total Respondents | Total Score | Mean | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||
Drought resistance | 98 | 14 | 18 | 12 | 1 | 5 | 2 | 150 | 10,549 | 70.33 | 1 |
Adaptable cultivars | 46 | 38 | 25 | 17 | 9 | 4 | 11 | 150 | 9182 | 61.21 | 3 |
Variety of use | 59 | 11 | 18 | 22 | 23 | 5 | 12 | 150 | 8936 | 59.57 | 4 |
Nutritional content | 28 | 37 | 14 | 15 | 9 | 28 | 19 | 150 | 7959 | 53.06 | 5 |
Reduction in carbon footprint | 12 | 15 | 19 | 11 | 13 | 12 | 68 | 150 | 6034 | 40.23 | 7 |
Cheaper than other crops | 74 | 8 | 24 | 7 | 17 | 14 | 6 | 150 | 9431 | 62.87 | 2 |
Soil fertility | 32 | 13 | 19 | 16 | 18 | 17 | 35 | 150 | 7391 | 49.27 | 6 |
Factors | Rank | Total Respondents | Total Score | Mean | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||
Education and awareness | 56 | 35 | 12 | 9 | 17 | 13 | 8 | 150 | 9217 | 61.45 | 3 |
Lack of market preparedness | 80 | 13 | 45 | 3 | 6 | 1 | 2 | 150 | 10,229 | 68.19 | 1 |
High cost of inputs | 60 | 27 | 4 | 7 | 12 | 24 | 16 | 150 | 8784 | 58.56 | 4 |
Lack of good storage facilities | 13 | 38 | 32 | 16 | 4 | 21 | 26 | 150 | 7617 | 50.78 | 5 |
Inadequate research | 23 | 14 | 35 | 19 | 18 | 10 | 31 | 150 | 7482 | 49.88 | 6 |
Poor access to credit | 95 | 18 | 9 | 3 | 11 | 5 | 9 | 150 | 10,197 | 67.98 | 2 |
Shortage of labor | 15 | 24 | 16 | 17 | 12 | 14 | 52 | 150 | 6667 | 44.45 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkosi, Z.; Marwa, N.; Akinrinde, O.O. Exploring the Feasibility of Sorghum Farming in South Africa Using Garrett’s Ranking Technique. Agriculture 2024, 14, 2348. https://doi.org/10.3390/agriculture14122348
Nkosi Z, Marwa N, Akinrinde OO. Exploring the Feasibility of Sorghum Farming in South Africa Using Garrett’s Ranking Technique. Agriculture. 2024; 14(12):2348. https://doi.org/10.3390/agriculture14122348
Chicago/Turabian StyleNkosi, Zamaswazi, Nyankomo Marwa, and Olawale Olufemi Akinrinde. 2024. "Exploring the Feasibility of Sorghum Farming in South Africa Using Garrett’s Ranking Technique" Agriculture 14, no. 12: 2348. https://doi.org/10.3390/agriculture14122348
APA StyleNkosi, Z., Marwa, N., & Akinrinde, O. O. (2024). Exploring the Feasibility of Sorghum Farming in South Africa Using Garrett’s Ranking Technique. Agriculture, 14(12), 2348. https://doi.org/10.3390/agriculture14122348