Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
Data Collection
3. Results and Discussion
3.1. Analysis of Bibliometric Data
3.2. Organic Waste
3.3. Organic Waste Management
3.3.1. Composting Process
3.3.2. Compost Conception Methods
3.3.3. Composting Parameters
3.4. Impact of Applying Compost on Agricultural Soil
3.4.1. Environmental Impact
3.4.2. Agricultural Impact
3.4.3. Economical Impact
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A Review. Bioresour. Technol. 2008, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Using Soil Bacteria to Facilitate Phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Y.; Sheng, H. Green Waste Characteristics and Sustainable Recycling Options. Resour. Environ. Sustain. 2023, 11, 100098. [Google Scholar] [CrossRef]
- Majbar, Z.; El Madani, F.-Z.; Khalis, M.; Lahlou, K.; Ben Abbou, M.; Majbar, E.B.; Bourhia, M.; AL-Huqail, A.A.; El Askary, A.; Khalifa, A.S.; et al. Farmers’ Perceptions and Willingness of Compost Production and Use to Contribute to Environmental Sustainability. Sustainability 2021, 13, 13335. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Islam, S.; Nitu, T.T.; Uddin, S.; Kabir, A.K.M.A.; Meah, M.B.; Islam, R. Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy 2021, 11, 2101. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting Parameters and Compost Quality: A Literature Review. Org. Agr. 2017, 8, 141–158. [Google Scholar] [CrossRef]
- Azim, K.; Komenane, S.; Soudi, B. Agro-Environmental Assessment of Composting Plants in Southwestern of Morocco (Souss-Massa Region). Int. J. Recycl. Org. Waste Agric. 2017, 6, 107–115. [Google Scholar] [CrossRef]
- Azim, K.; Faissal, Y.; Soudi, B.; Perissol, C.; Roussos, S.; Thami Alami, I. Elucidation of Functional Chemical Groups Responsible of Compost Phytotoxicity Using Solid-State 13C NMR Spectroscopy under Different Initial C/N Ratios. Environ. Sci. Pollut. Res. 2018, 25, 3408–3422. [Google Scholar] [CrossRef] [PubMed]
- Devkota, M.; Devkota, K.P.; Kumar, S. Conservation Agriculture Improves Agronomic, Economic, and Soil Fertility Indicators for a Clay Soil in a Rainfed Mediterranean Climate in Morocco. Agric. Syst. 2022, 201, 103470. [Google Scholar] [CrossRef]
- Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Panainte-Lehadus, M.; Mosnegutu, E.; Tomozei, C.; Chitimus, D.; Irimia, O. Assessment of Manure Compost Used as Soil Amendment—A Review. Processes 2023, 11, 1167. [Google Scholar] [CrossRef]
- Fernandes, P.; Pinto, R.; Correia, C.; Mourão, I.; Moura, L.; Brito, L.M. Impact of Kiwifruit Waste Compost on Soil Bacteriome and Lettuce Growth. Agriculture 2024, 14, 1409. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Mouhir, L.; Mdarhri Alaoui, M.; Sanad, H.; Iben Halima, O.; Zouahri, A. Assessing the Evolution of Stability and Maturity in Co-Composting Sheep Manure with Green Waste Using Physico-Chemical and Biological Properties and Statistical Analyses: A Case Study of Botanique Garden in Rabat, Morocco. Agronomy 2024, 14, 1573. [Google Scholar] [CrossRef]
- Chabbi, N.; Labbassi, S.; Afi, C.; Chafiki, S.; Telmoudi, M.; Tiouidji, F.E.; Wifaya, A.; Bouharroud, R.; Tahiri, A.; Qessaoui, R.; et al. Mineral and Organic Fertilizers’ Effect on the Growth of Young Argane Trees (Argania spinosa L.) and Soil Properties under Vulnerable Conditions. Plants 2024, 13, 2026. [Google Scholar] [CrossRef] [PubMed]
- Sanad, H.; Moussadek, R.; Mouhir, L.; Oueld Lhaj, M.; Dakak, H.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Zouahri, A. Assessment of Soil Spatial Variability in Agricultural Ecosystems Using Multivariate Analysis, Soil Quality Index (SQI), and Geostatistical Approach: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Agronomy 2024, 14, 1112. [Google Scholar] [CrossRef]
- García Castellanos, B.; García García, B.; García García, J. Economic and Environmental Effects of Replacing Inorganic Fertilizers with Organic Fertilizers in Three Rainfed Crops in a Semi-Arid Area. Sustainability 2023, 15, 16897. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Chakrabarti, K.; Chakraborty, A.; Nayak, D.C.; Tripathy, S.; Powell, M.A. Municipal Waste Compost as an Alternative to Cattle Manure for Supplying Potassium to Lowland Rice. Chemosphere 2007, 66, 1789–1793. [Google Scholar] [CrossRef]
- López-Cano, I.; Roig, A.; Cayuela, M.L.; Alburquerque, J.A.; Sánchez-Monedero, M.A. Biochar Improves N Cycling During Composting of Olive Mill Wastes and Sheep Manure. Waste Manag. 2016, 49, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-Composting of Green Waste and Food Waste at Low C/N Ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Adugna, G. A Review on Impact of Compost on Soil Properties, Water Use and Crop Productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar] [CrossRef]
- Kelley, A.; Wilkie, A.C.; Maltais-Landry, G. Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils. Agriculture 2020, 10, 69. [Google Scholar] [CrossRef]
- Elbagory, M. Reducing the Adverse Effects of Salt Stress by Utilizing Compost Tea and Effective Microorganisms to Enhance the Growth and Yield of Wheat (Triticum aestivum L.) Plants. Agronomy 2023, 13, 823. [Google Scholar] [CrossRef]
- Abdelilah, M.; OUFDOU, K.; Boutasknit, A.; Anas, R.; Tahiri, A.-I.; Ben-Laouane, R.; Ait-El-Mokhtar, M.; Anli, M.; Mitsui, T.; Wahbi, S.; et al. Use of Organic and Biological Fertilizers as Strategies to Improve Crop Biomass and Yields and Physicochemical Parameters of Soil; Springer: Singapore, 2019; pp. 247–288. ISBN 9789811386596. [Google Scholar]
- Antil, R.S.; Raj, D.; Abdalla, N.; Inubushi, K. Physical, Chemical and Biological Parameters for Compost Maturity Assessment: A Review. In Composting for Sustainable Agriculture; Springer: Cham, Switzerland, 2014; Volume 3, pp. 83–101. ISBN 978-3-319-08004-8. [Google Scholar]
- Cao, L.; Luo, G.; Tsang, D.C.W.; Chen, H.; Zhang, S.; Chen, J. A Novel Process for Obtaining High Quality Cellulose Acetate from Green Landscaping Waste. J. Clean. Prod. 2018, 176, 338–347. [Google Scholar] [CrossRef]
- Kan, X.; Yao, Z.; Zhang, J.; Tong, Y.W.; Yang, W.; Dai, Y.; Wang, C.-H. Energy Performance of an Integrated Bio-and-Thermal Hybrid System for Lignocellulosic Biomass Waste Treatment. Bioresour. Technol. 2017, 228, 77–88. [Google Scholar] [CrossRef]
- López, M.; Soliva, M.; Martínez-Farré, F.X.; Bonmatí, A.; Huerta-Pujol, O. An Assessment of the Characteristics of Yard Trimmings and Recirculated Yard Trimmings Used in Biowaste Composting. Bioresour. Technol. 2010, 101, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T.F. Physico-Chemical Characterisation of Material Fractions in Household Waste: Overview of Data in Literature. Waste Manag. 2016, 49, 3–14. [Google Scholar] [CrossRef]
- Karnchanawong, S.; Mongkontep, T.; Praphunsri, K. Effect of Green Waste Pretreatment by Sodium Hydroxide and Biomass Fly Ash on Composting Process. J. Clean. Prod. 2017, 146, 14–19. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, J.; Hu, Y.; Fang, Y.; Zhang, H.; Xing, L.; Wang, Y.; Zeng, G. Humic Substances from Green Waste Compost: An Effective Washing Agent for Heavy Metal (Cd, Ni) Removal from Contaminated Sediments. J. Hazard. Mater. 2018, 366, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Soobhany, N.; Mohee, R.; Garg, V.K. Inactivation of Bacterial Pathogenic Load in Compost against Vermicompost of Organic Solid Waste Aiming to Achieve Sanitation Goals: A Review. Waste Manag. 2017, 64, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Lazcano, C.; Domínguez, J. The Evaluation of Stability and Maturity during the Composting of Cattle Manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef]
- Manirakiza, N.; Şeker, C. Effects of Compost and Biochar Amendments on Soil Fertility and Crop Growth in a Calcareous Soil. J. Plant Nutr. 2020, 43, 3002–3019. [Google Scholar] [CrossRef]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop Residue Stabilization and Application to Agricultural and Degraded Soils: A Review. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting Technology in Waste Stabilization: On the Methods, Challenges and Future Prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Tabrika, I.; Azim, K.; Mayad, E.H.; Zaafrani, M. Composting of Tomato Plant Residues: Improvement of Composting Process and Compost Quality by Integration of Sheep Manure. Org. Agric. 2019, 10, 229–242. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Improving Green Waste Composting by Addition of Sugarcane Bagasse and Exhausted Grape Marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Sortino, O.; Montoneri, E.; Patanè, C.; Rosato, R.; Tabasso, S.; Ginepro, M. Benefits for Agriculture and the Environment from Urban Waste. Sci. Total Environ. 2014, 487, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.M.; Coutinho, J.; Smith, S.R. Methods to Improve the Composting Process of the Solid Fraction of Dairy Cattle Slurry. Bioresour. Technol. 2008, 99, 8955–8960. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, S.; Guo, X.; Zhao, T.; Zhang, B. Succession and Diversity of Microorganisms and Their Association with Physicochemical Properties during Green Waste Thermophilic Composting. Waste Manag. 2018, 73, 101–112. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, J.; Yang, Y.; Liu, Y.; Zhang, L.; Wang, G.; Liu, G.; Dang, R.; Li, G.; Yuan, J. Determining the Extraction Conditions and Phytotoxicity Threshold for Compost Maturity Evaluation Using the Seed Germination Index Method. Waste Manag. 2023, 171, 502–511. [Google Scholar] [CrossRef]
- Amir, S.; Merlina, G.; Pinelli, E.; Winterton, P.; Revel, J.-C.; Hafidi, M. Microbial Community Dynamics during Composting of Sewage Sludge and Straw Studied through Phospholipid and Neutral Lipid Analysis. J. Hazard. Mater. 2008, 159, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost Supplementation with Nutrients and Microorganisms in Composting Process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Conte, A.; Belgiorno, V.; Siciliano, A.; Guida, M. The Evolution of Compost Stability and Maturity during the Full-Scale Treatment of the Organic Fraction of Municipal Solid Waste. J. Environ. Manag. 2019, 232, 264–270. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R.S. Evaluation of Maturity and Stability Parameters of Composts Prepared from Farm Wastes. Arch. Agron. Soil Sci. 2012, 58, 817–832. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. Composting: The Way for a Sustainable Agriculture. Appl. Soil Ecol. 2018, 123, 744–750. [Google Scholar] [CrossRef]
- Villar, I.; Alves, D.; Garrido, J.; Mato, S. Evolution of Microbial Dynamics during the Maturation Phase of the Composting of Different Types of Waste. Waste Manag. 2016, 54, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Makan, A.; Assobhei, O.; Mountadar, M. Effect of Initial Moisture Content on the In-Vessel Composting under Air Pressure of Organic Fraction of Municipal Solid Waste in Morocco. Iran. J. Environ. Health Sci. Eng. 2013, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Voběrková, S.; Vaverková, M.D.; Adamcová, D. Enzyme Production During Composting of Aliphatic–Aromatic Copolyesters in Organic Wastes. Environ. Eng. Sci. 2017, 34, 177–184. [Google Scholar] [CrossRef]
- El Fels, L.; Lemee, L.; Ambles, A.; Hafidi, M. Identification and Biotransformation of Lignin Compounds during Co-Composting of Sewage Sludge-Palm Tree Waste Using Pyrolysis-GC/MS. Int. Biodeterior. Biodegrad. 2014, 92, 26–35. [Google Scholar] [CrossRef]
- Lim, L.Y.; Bong, C.P.C.; Lee, C.T.; Klemes, J.J.; Sarmidi, M.R.; Lim, J.S. Review on the Current Composting Practices and the Potential of Improvement Using Two-Stage Composting. Chem. Eng. Trans. 2017, 61, 1051–1056. [Google Scholar] [CrossRef]
- Gavilanes-Terán, I.; Jara-Samaniego, J.; Idrovo-Novillo, J.; Bustamante, M.A.; Moral, R.; Paredes, C. Windrow Composting as Horticultural Waste Management Strategy—A Case Study in Ecuador. Waste Manag. 2015, 48, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of Biomass Waste into Sustainable Organic Fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Hassen, A.; Belguith, K.; Jedidi, N.; Cherif, A.; Cherif, M.; Boudabous, A. Microbial Characterization during Composting of Municipal Solid Waste. Bioresour. Technol. 2001, 80, 217–225. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, L.; Li, R. Effects of Additives on Physical, Chemical, and Microbiological Properties during Green Waste Composting. Bioresour. Technol. 2021, 340, 125719. [Google Scholar] [CrossRef]
- Mu, D.; Horowitz, N.; Casey, M.; Jones, K. Environmental and Economic Analysis of an In-Vessel Food Waste Composting System at Kean University in the U.S. Waste Manag. 2017, 59, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Gu, M.; Yu, P.; Zhou, C.; Liu, X. Biochar and Vermicompost Amendments Affect Substrate Properties and Plant Growth of Basil and Tomato. Agronomy 2020, 10, 224. [Google Scholar] [CrossRef]
- Katiyar, R.B.; Sundaramurthy, S.; Sharma, A.K.; Arisutha, S.; Pratap-Singh, A.; Mishra, S.; Ayub, R.; Jeon, B.-H.; Khan, M.A. Vermicompost: An Eco-Friendly and Cost-Effective Alternative for Sustainable Agriculture. Sustainability 2023, 15, 14701. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.-C.; Liu, T.; Zhang, Z.; Kumar Awasthi, M. Recent Trends and Advances in Composting and Vermicomposting Technologies: A Review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef]
- Goyal, S.; Dhull, S.K.; Kapoor, K.K. Chemical and Biological Changes during Composting of Different Organic Wastes and Assessment of Compost Maturity. Bioresour. Technol. 2005, 96, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Rashad, F.M.; Saleh, W.D.; Moselhy, M.A. Bioconversion of Rice Straw and Certain Agro-Industrial Wastes to Amendments for Organic Farming Systems: 1. Composting, Quality, Stability and Maturity Indices. Bioresour. Technol. 2010, 101, 5952–5960. [Google Scholar] [CrossRef] [PubMed]
- Wichuk, K.M.; McCartney, D. Compost Stability and Maturity Evaluation—A Literature Review. J. Environ. Eng. Sci. 2013, 8, 601–620. [Google Scholar] [CrossRef]
- Zemánek, P. Evaluation of Compost Influence on Soil Water Retention. Acta Univ. Agric. Silvic. Mendel. Brun. 2011, LIX, 227–232. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- He, Z.; Yang, X.; Kahn, B.A.; Stoffella, P.J.; Calvert, D.V. Plant Nutrition Benefits of Phosphorus, Potassium, Calcium, Magnesium, and Micronutrients from Compost Utilization. Compost. Util. Hortic. Crop. Syst. 2001, 15, 307–320. [Google Scholar] [CrossRef]
- Ejileugha, C.; Onyegbule, U.O.; Osuoha, J.O. Use of Additives in Composting Promotes Passivation and Reduction in Bioavailability of Heavy Metals (HMs) in Compost. Rev. Environ. Contam. Toxicol. 2024, 262, 2. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Lyamlouli, K. Olive Mill Waste Sludge: From Permanent Pollution to a Highly Beneficial Organic Biofertilizer: A Critical Review and Future Perspectives. Ecotoxicol. Environ. Saf. 2023, 259, 114997. [Google Scholar] [CrossRef]
- Sanad, H.; Oueld Lhaj, M.; Zouahri, A.; Saafadi, L.; Dakak, H.; Mouhir, L. Groundwater Pollution by Nitrate and Salinization in Morocco: A Comprehensive Review. J. Water Health 2024, 22, 1756–1773. [Google Scholar] [CrossRef]
- Kouchou, A.; El Ghachtouli, N.; Duplay, J.; Ghazi, M.; Elsass, F.; Thoisy, J.C.; Bellarbi, M.; Ijjaali, M.; Rais, N. Evaluation of the Environmental and Human Health Risk Related to Metallic Contamination in Agricultural Soils in the Mediterranean Semi-Arid Area (Saiss Plain, Morocco). Environ. Earth Sci. 2020, 79, 131. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Sun, H.; Zhou, S.; Zou, G. Straw Biochar Hastens Organic Matter Degradation and Produces Nutrient-Rich Compost. Bioresour. Technol. 2016, 200, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J.; Bernas, J.; Mukosha, C.E.; Hoang, T.N. Environmental Assessment of Dryland and Irrigated Winter Wheat Cultivation under Compost Fertilization Strategies. Plants 2024, 13, 509. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, W.; Chen, L.; Meng, L.; Zhang, S. Impacts of Adding Thermotolerant Nitrifying Bacteria on Nitrogenous Gas Emissions and Bacterial Community Structure during Sewage Sludge Composting. Bioresour. Technol. 2023, 368, 128359. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A Systematic Review on the Composting of Green Waste: Feedstock Quality and Optimization Strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Ozi, F.Z.; Boutaleb, N.; Hadidi, M.; Bahlaouan, B.; Bennani, M.; Silkina, A.; El Antri, S. Production of Bio-fertilizer by Biotransformation of Poultry Waste Enriched with Molasses and Algae. Environ. Qual. Manag. 2023, 32, 123–134. [Google Scholar] [CrossRef]
- Mana, A.A.; Allouhi, A.; Ouazzani, K.; Jamil, A. Feasibility of Agriculture Biomass Power Generation in Morocco: Techno-Economic Analysis. J. Clean. Prod. 2021, 295, 126293. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Li, C.; Liu, W.; Yu, X.; Cheng, D.; Jiang, G. Vermicomposting with Maize Increases Agricultural Benefits by 304%. Agron. Sustain. Dev. 2015, 35, 1149–1155. [Google Scholar] [CrossRef]
- Zgallai, H.; Zoghlami, R.I.; Annabi, M.; Zarrouk, O.; Jellali, S.; Hamdi, H. Mitigating Soil Water Deficit Using Organic Waste Compost and Commercial Water Retainer: A Comparative Study under Semiarid Conditions. Euro-Mediterr. J. Environ. Integr. 2024, 9, 377–391. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- El Moussaoui, H.; Bouqbis, L. Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan. Sustainability 2022, 14, 7270. [Google Scholar] [CrossRef]
- Arslan Topal, E.I.; Ünlü, A.; Topal, M. Effect of Aeration Rate on Elimination of Coliforms during Composting of Vegetable–Fruit Wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 243–249. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J. Biological Control of Escherichia Coli O157:H7 in Dairy Manure-Based Compost Using Competitive Exclusion Microorganisms. Pathogens 2024, 13, 361. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, S.M.; El-Hadidi, Y.M.; El-Kasemy, S. Effect of Aeration Rates and Mechanical Stirring System on Compost Production from Some Farm Wastes. J. Soil Sci. Agric. Eng. 2021, 12, 831–838. [Google Scholar] [CrossRef]
- Farooq, Q.U.A.; McComb, J.; Hardy, G.E.S.J.; Burgess, T.I. Soil Amendments for Management of Phytophthora Root Rot in Avocado and Their Impact on the Soil Microbiome. J. Plant Pathol. 2024, 106, 439–455. [Google Scholar] [CrossRef]
- Garau, M.; Pinna, M.V.; Nieddu, M.; Castaldi, P.; Garau, G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. Plants 2024, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Gabhane, J.; William, S.P.; Bidyadhar, R.; Bhilawe, P.; Anand, D.; Vaidya, A.N.; Wate, S.R. Additives Aided Composting of Green Waste: Effects on Organic Matter Degradation, Compost Maturity, and Quality of the Finished Compost. Bioresour. Technol. 2012, 114, 382–388. [Google Scholar] [CrossRef]
- Sanad, H.; Moussadek, R.; Dakak, H.; Zouahri, A.; Oueld Lhaj, M.; Mouhir, L. Ecological and Health Risk Assessment of Heavy Metals in Groundwater within an Agricultural Ecosystem Using GIS and Multivariate Statistical Analysis (MSA): A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 2417. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Awasthi, M.K.; Jiang, Y.; Li, R.; Ren, X.; Zhao, J.; Shen, F.; Wang, M.; Zhang, Z. Evaluation of Medical Stone Amendment for the Reduction of Nitrogen Loss and Bioavailability of Heavy Metals during Pig Manure Composting. Bioresour. Technol. 2016, 220, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sun, W.; Yu, Y.; Ding, Y.; Yang, Y.; Zhang, Z.; Ma, J. Simultaneous Reductions in Antibiotics and Heavy Metal Pollution during Manure Composting. Sci. Total Environ. 2021, 788, 147830. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Yang, J.; Guo, Y.; Wu, X.; Tian, Y.; Li, H.; Awasthi, M.K. Pollution Control in Biochar-Driven Clean Composting: Emphasize on Heavy Metal Passivation and Gaseous Emissions Mitigation. J. Hazard. Mater. 2021, 420, 126635. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, X.; Xiao, S.; Fan, W. Review of Remediation Technologies for Sediments Contaminated by Heavy Metals. J. Soils Sediments 2018, 18, 1701–1719. [Google Scholar] [CrossRef]
- Yousif Abdellah, Y.A.; Shi, Z.-J.; Luo, Y.-S.; Hou, W.-T.; Yang, X.; Wang, R.-L. Effects of Different Additives and Aerobic Composting Factors on Heavy Metal Bioavailability Reduction and Compost Parameters: A Meta-Analysis. Environ. Pollut. 2022, 307, 119549. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Y.; Qu, F.; Hou, F.; Chen, H.; Li, X. Effects of Different Loading Rates and Types of Biochar on Passivations of Cu and Zn via Swine Manure Composting. J. Arid Land 2020, 12, 1056–1070. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Zhong, R.; Bao, M.; Guo, H.; Xie, Z. Binding Characteristics of Humic Substances with Cu and Zn in Response to Inorganic Mineral Additives during Swine Manure Composting. J. Environ. Manag. 2022, 305, 114387. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Zhang, Z.; Shen, F.; Zhang, G.; Qin, R.; Li, X.; Xiao, R. Nutrient Transformations during Composting of Pig Manure with Bentonite. Bioresour. Technol. 2012, 121, 362–368. [Google Scholar] [CrossRef]
- Villaseñor, J.; Rodríguez, L.; Fernández, F.J. Composting Domestic Sewage Sludge with Natural Zeolites in a Rotary Drum Reactor. Bioresour. Technol. 2011, 102, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Umair Hassan, M.; Huang, G.; Munir, R.; Khan, T.A.; Noor, M.A. Biochar Co-Compost: A Promising Soil Amendment to Restrain Greenhouse Gases and Improve Rice Productivity and Soil Fertility. Agronomy 2024, 1583. [Google Scholar] [CrossRef]
- Guidini Lopes, I.; Wiklicky, V.; Ermolaev, E.; Lalander, C. Dynamics of Black Soldier Fly Larvae Composting—Impact of Substrate Properties and Rearing Conditions on Process Efficiency. Waste Manag. 2023, 172, 25–32. [Google Scholar] [CrossRef]
- Attiogbe, F.K.; Ayim, N.Y.K.; Martey, J. Effectiveness of Black Soldier Fly Larvae in Composting Mercury Contaminated Organic Waste. Sci. Afr. 2019, 6, e00205. [Google Scholar] [CrossRef]
- Maaouane, M.; Dobrović, S.; Zouggar, S.; Krajačić, G. Alternative Municipal Solid Waste Management Systems in Morocco: Energy Savings and GHG Emission Reduction. In Proceedings of the Sustainability in Energy and Buildings 2020; Littlewood, J., Howlett, R.J., Jain, L.C., Eds.; Springer: Singapore, 2021; pp. 55–73. [Google Scholar]
- Pardo, G.; Moral, R.; Aguilera, E.; Del Prado, A. Gaseous Emissions from Management of Solid Waste: A Systematic Review. Glob. Change Biol. 2015, 21, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental Challenges Impeding the Composting of Biodegradable Municipal Solid Waste: A Critical Review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Huang, Z.; Li, P.; Ju, M.; Zhan, S.; Wang, P. Air Bag Bioreactor to Improve Biowaste Composting and Application. J. Clean. Prod. 2019, 237, 117797. [Google Scholar] [CrossRef]
- Andraskar, J.; Yadav, S.; Kepley, A. Challenges and Control Strategies of Odor Emission from Composting Operation. Appl. Biochem. Biotechnol. 2021, 193, 2331–2356. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, T.; Tsang, D.C.W.; Li, G. Effects of External Additives: Biochar, Bentonite, Phosphate, on Co-Composting for Swine Manure and Corn Straw. Chemosphere 2020, 248, 125–927. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Moral, R.; Paredes, C.; Bustamante, M.A.; Marhuenda-Egea, F.; Bernal, M.P. Utilisation of Manure Composts by High-Value Crops: Safety and Environmental Challenges. Bioresour. Technol. 2009, 100, 5454–5460. [Google Scholar] [CrossRef] [PubMed]
- Masmoudi, S.; Magdich, S.; Rigane, H.; Medhioub, K.; Rebai, A.; Ammar, E. Effects of Compost and Manure Application Rate on the Soil Physico-Chemical Layers Properties and Plant Productivity. Waste Biomass Valorization 2020, 11, 1883–1894. [Google Scholar] [CrossRef]
- Aouass, K.; Kenny, L. Nitrogen Use Efficiency and Yield of Broccoli Crop Fertilized with Compost and Synthetic Fertilizer in Arid Region of Morocco. Bulg. J. Agric. Sci. 2023, 29, 277–284. [Google Scholar]
- Cao, H.; Liu, J.; Ma, S.; Wu, X.; Fu, Y.; Gao, Y. Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration. Plants 2024, 13, 2428. [Google Scholar] [CrossRef] [PubMed]
- Cabañas-Vargas, D.D.; Sánchez-Monedero, M.A.; Urpilainen, S.T.; Kamilaki, A.; Stentiford, E.I. Assessing the Stability and Maturity of Compost at Large-Scale Plants. Ingenieria 2005, 9, 25–30. [Google Scholar]
- Tabrika, I.; Mayad, E.H.; Furze, J.N.; Zaafrani, M.; Azim, K. Optimization of Tomato Waste Composting with Integration of Organic Feedstock. Environ. Sci. Pollut. Res. 2021, 28, 64140–64149. [Google Scholar] [CrossRef]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material Utilization of Green Waste: A Review on Potential Valorization Methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive Review on Agricultural Waste Utilization and High-Temperature Fermentation and Composting. Biomass Conv. Biorefinery 2023, 13, 5445–5468. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour. Technol. 2017, 245, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Price, G.W. Evaluation of Three Composting Systems for the Management of Spent Coffee Grounds. Bioresour. Technol. 2011, 102, 7966–7974. [Google Scholar] [CrossRef]
- Tabrika, I.; Mayad, E.H.; Zaafrani, M.; Guilli, M.E.; Azim, K. Optimization of Solid Phosphate Sludge Composting by Integration of Horticultural Waste. Org. Agric. 2020, 11, 319–325. [Google Scholar] [CrossRef]
- Bojarski, W.; Czekała, W.; Nowak, M.; Dach, J. Production of Compost from Logging Residues. Bioresour. Technol. 2023, 376, 128878. [Google Scholar] [CrossRef] [PubMed]
- Aydi, S.; Sassi Aydi, S.; Rahmani, R.; Bouaziz, F.; Souchard, J.P.; Merah, O.; Abdelly, C. Date-Palm Compost as Soilless Substrate Improves Plant Growth, Photosynthesis, Yield and Phytochemical Quality of Greenhouse Melon (Cucumis melo L.). Agronomy 2023, 13, 212. [Google Scholar] [CrossRef]
- Hakimi, F.; Sebbar, A.; Bouamri, R.; Sidikou, A.A.H.; El Janati, M.; Bouaziz, A. Effects of Compost and Compost Tea on Soil Properties and Nutrient Uptake of the Moroccan Date Palm Cultivar “Mejhoul” under Organic Cultivation. J. Ecol. Eng. 2024, 25, 224–240. [Google Scholar] [CrossRef]
- Ortiz, C.; Yagüe, M.R.; Valdez, A.S.; Molina, M.G.; Bosch-Serra, À.D. Sustainability of Organic Fertilizers Use in Dryland Mediterranean Agriculture. Agriculture 2024, 14, 1301. [Google Scholar] [CrossRef]
- Bouras, H.; Devkota, K.P.; Mamassi, A.; Loudari, A.; Choukr-Allah, R.; El-Jarroudi, M. Unveiling the Synergistic Effects of Phosphorus Fertilization and Organic Amendments on Red Pepper Growth, Productivity and Physio-Biochemical Response under Saline Water Irrigation and Climate-Arid Stresses. Plants 2024, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Jjagwe, J.; Chelimo, K.; Karungi, J.; Komakech, A.J.; Lederer, J. Comparative Performance of Organic Fertilizers in Maize (Zea mays L.) Growth, Yield, and Economic Results. Agronomy 2020, 10, 69. [Google Scholar] [CrossRef]
- Helgason, B.L.; Larney, F.J.; Janzen, H.H. Estimating Carbon Retention in Soils Amended with Composted Beef Cattle Manure. Can. J. Soil Sci. 2005, 85, 39–46. [Google Scholar] [CrossRef]
- Hirich, E.H.; Bouizgarne, B.; Zouahri, A.; Ibn Halima, O.; Azim, K. How Does Compost Amendment Affect Stevia Yield and Soil Fertility? In Proceedings of the 2nd International Laayoune Forum on Biosaline Agriculture, Virtual, 14–16 June 2022; p. 46. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueld Lhaj, M.; Moussadek, R.; Zouahri, A.; Sanad, H.; Saafadi, L.; Mdarhri Alaoui, M.; Mouhir, L. Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems. Agriculture 2024, 14, 2356. https://doi.org/10.3390/agriculture14122356
Oueld Lhaj M, Moussadek R, Zouahri A, Sanad H, Saafadi L, Mdarhri Alaoui M, Mouhir L. Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems. Agriculture. 2024; 14(12):2356. https://doi.org/10.3390/agriculture14122356
Chicago/Turabian StyleOueld Lhaj, Majda, Rachid Moussadek, Abdelmjid Zouahri, Hatim Sanad, Laila Saafadi, Meriem Mdarhri Alaoui, and Latifa Mouhir. 2024. "Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems" Agriculture 14, no. 12: 2356. https://doi.org/10.3390/agriculture14122356
APA StyleOueld Lhaj, M., Moussadek, R., Zouahri, A., Sanad, H., Saafadi, L., Mdarhri Alaoui, M., & Mouhir, L. (2024). Sustainable Agriculture Through Agricultural Waste Management: A Comprehensive Review of Composting’s Impact on Soil Health in Moroccan Agricultural Ecosystems. Agriculture, 14(12), 2356. https://doi.org/10.3390/agriculture14122356