Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Dynamic Soil Nutrient Buildup and Mass Balance
3.2. Controls of Dynamic Soil Nutrient Buildup and Total Soil Nutrient Buildup
4. Discussion
4.1. Controls of the Dynamic Buildup of Soil Nutrients: Three Kinds of Soil Nutrients
4.2. Total Soil Nutrient Buildup: Interactive Effects of Precipitation with Site
4.3. All Nutrients in Mass Balance, but K Is a Conundrum
4.4. Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arnon, I. Mineral Nutrition of Maize; IPI: Berne, Switzerland, 1975; pp. 117–121. [Google Scholar]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernandez-Clemente, R.; Zhao, Y.C.; Gaitan, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Ren, Z.B.; Li, C.J.; Fu, B.J.; Wang, S.; Stringer, L.C. Effects of aridification on soil total carbon pools in China’s drylands. Glob. Change Biol. 2024, 30, e17091. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.S.; Yuan, Y.G.; Zhang, Q.; Tang, J.J.; Liu, Y.; Chen, X. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 2011, 87, 70–77. [Google Scholar] [CrossRef]
- Xu, S.; Sayer, E.J.; Eisenhauer, N.; Lu, X.K.; Wang, J.J.; Liu, C.S. Aboveground litter inputs determine carbon storage across soil profiles: A meta-analysis. Plant Soil 2021, 462, 429–444. [Google Scholar] [CrossRef]
- Chang, L.; Long, C.Y.; Zhang, Q.; Cheng, X.L. Stronger effect of litter quality than micro-organisms on leaf and root litter C and N loss at different decomposition stages following a subtropical land use change. Funct. Ecol. 2022, 36, 896–907. [Google Scholar]
- Tariq, A.; Graciano, C.; Sardans, J.; Zeng, F.J.; Hughes, A.C.; Ahmed, Z.; Ullah, A.; Ali, S.; Gao, Y.J.; Peñuelas, J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytol. 2024, 242, 916–934. [Google Scholar] [CrossRef] [PubMed]
- Elrys, A.S.; El-Maati, M.F.A.; Dan, X.Q.; Wen, Y.H.; Mou, J.X.; Abdelghany, A.E.; Uwiragiye, Y.; Shuirong, T.; Wu, Y.Z.; Meng, L.; et al. Aridity creates global thresholds in soil nitrogen retention and availability. Glob. Change Biol. 2023, 30, e17003. [Google Scholar] [CrossRef]
- Chen, Y.S.; Zhang, S.H.; Wang, Y.D.; Abzhanov, T.; Sarsekova, D.; Zhumabekova, Z. The Spatial Distribution of Soil Nitrogen Storage and the Factors That Influence It in Central Asia’s Typical Arid and Semiarid Grasslands. Diversity 2022, 14, 459. [Google Scholar] [CrossRef]
- Su, Y.G.; Huang, G.; Lin, S.N.; Huang, Z.Y.; Wu, G.P.; Cheng, H. Patterns of Organic Carbon and Nitrogen Stocks in Soil Particle-Size Fractions along an Aridity Gradient in Northern China’s Deserts. Catena 2023, 221, 106785. [Google Scholar] [CrossRef]
- Plaza, C.; Zaccone, C.; Sawicka, K.; Méndez, A.M.; Tarquis, A.; Gascó, G.; Heuvelink, G.B.; Schuur, E.A.; Maestre, F.T. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 2018, 8, 13788. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Räisänen, J. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 747–845. [Google Scholar]
- Pachauri, R.K.; Meyer, L.A.; Core Writing Team. Climate Change 2014: Synthesis Report. In Proceedings of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, 27–31 October 2014. [Google Scholar]
- Santonja, M.; Fernandez, C.; Gauquelin, T.; Baldy, V. Climate change effects on litter decomposition: Intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 2015, 393, 69–82. [Google Scholar] [CrossRef]
- He, M.Z.; Ji, X.B.; Bu, D.S.; Zhi, J.H. Cultivation effects on soil texture and fertility in an arid desert region of northwestern China. J. Arid Land 2020, 12, 701–715. [Google Scholar] [CrossRef]
- Belnap, J.; Welter, J.R.; Grimm, N.B.; Barger, N.N.; Ludwig, J.A. Linkages between microbial and hydrologic processes in arid and semi-arid watersheds. Ecology 2005, 86, 298–307. [Google Scholar] [CrossRef]
- Cregger, M.A.; McDowell, N.G.; Pangle, R.E.; Pockman, W.T.; Classen, A.T. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem. Funct. Ecol. 2014, 28, 1534–1544. [Google Scholar] [CrossRef]
- Malik, A.A.; Swenson, T.; Weihe, C.; Morrison, E.W.; Martiny, J.B.H.; Brodie, E.L.; Northen, T.R.; Allison, S.D. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J. 2020, 14, 2236–2247. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.G.; Ran, J.Z.; Dong, L.W.; Du, Q.J.; Ji, M.F.; Yao, S.R.; Sun, Y.; Gong, C.; Hou, Q.; Gong, H.; et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 2021, 12, 5350. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Medina-Roldán, E.; Wang, S.K.; Ma, X.J.; Wang, X.Y.; Tang, X.; Liu, L.X. A 5-and a-half-year-experiment shows precipitation thresholds in litter decomposition and nutrient dynamics in arid and semi-arid regions. Biol. Fertil. Soils 2024, 60, 199–212. [Google Scholar] [CrossRef]
- D’Odorico, P.; Laio, F.; Porporato, A.; Rodriguez-Iturbe, I. Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Adv. Water Resour. 2003, 26, 59–70. [Google Scholar] [CrossRef]
- Salamanca, E.F.; Kaneko, N.; Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil Ecol. 2003, 22, 271–281. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.J.; Shao, M.A. Study on nitrogen leaching characteristics of loess slope under precipitation conditions. J. Soil Water Conserv. 2005, 5, 63–66. (In Chinese) [Google Scholar]
- Qu, H.; Zhao, H.L.; Zhao, X.Y.; Zuo, X.A.; Wang, S.K.; Chen, M. Physiological Responses of Two Shrubs to Sand Burial in Northern China. Environ. Monit. Assess. 2017, 189, 149. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhao, X.Y.; Zuo, X.A.; Wang, S.K.; Ma, X.J.; Tang, X.; Wang, X.Y.; Medina-Roldán, E. Litter decomposition in fragile ecosystems: A review. Sci. Cold Arid Reg. 2022, 14, 151–161. [Google Scholar]
- Zhang, R.; Zhao, X.Y.; Zuo, X.A.; Qu, H.; Degen, A.A.; Luo, Y.Y.; Ma, X.J.; Chen, M.; Liu, L.X.; Chen, J.L. Impacts of precipitation on ecosystem carbon fluxes in desert-grasslands in Inner Mongolia, China. J. Geophys. Res. Atmos. 2019, 124, 1266–1276. [Google Scholar] [CrossRef]
- Bao, S.D. Analysis of Soil Agricultural Chemistry, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 70–114. [Google Scholar]
- Pinheiro, J.; Bates, D.; R Core Team. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-159. Available online: http://cran.r-project.org/web/packages/nlme/ (accessed on 12 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 16 January 2024).
- Sanders, J. Veusz: A Scientific Plotting Package. 2008. Available online: https://veusz.github.io/ (accessed on 17 January 2024).
- Lv, G.F. The Preliminary Study on Seasonal Dynamics of Soil Microbe in Horqin Sandy Land. J. Desert Res. 1999, 19 (Suppl. 1), 107–109. (In Chinese) [Google Scholar]
- Shi, X.Z.; Yu, D.S.; Yang, G.X.; Wang, H.J.; Sun, W.X.; Du, G.H.; Gong, Z.T. Cross-reference benchmarks for translating the genetic soil classification of China into the Chinese soil taxonomy. Pedosphere 2006, 16, 147–153. [Google Scholar] [CrossRef]
- Lu, J.N.; Feng, S.; Wang, S.K.; Zhang, B.L.; Ning, Z.Y.; Wang, R.X.; Chen, X.P.; Yu, L.L.; Zhao, H.S.; Lan, D.M.; et al. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone. Catena 2023, 220, 106695. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Jin, V.L.; Haney, R.L.; Fay, P.A.; Polley, H.W. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biol. Biochem. 2013, 58, 172–180. [Google Scholar] [CrossRef]
- Smith, M.D.; Wilkins, K.D.; Gherardi, L.A.; Wilfahrt, P.; Collins, S.L.; Knapp, A.K.; Sala, O.E.; Dukes, J.S.; Phillips, R.P.; Yahdjian, L.; et al. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc. Natl. Acad. Sci. USA 2024, 121, e2309881120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zeng, D.H.; Fan, Z.P.; Yu, Z.Y.; Hu, Y.L.; Zhang, J. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types. For. Ecol. Manag. 2009, 258, 1376–1382. [Google Scholar] [CrossRef]
- Barré, P.; Durand, H.; Chenu, C.; Meunier, P.; Montagne, D.; Castel, G.; Billiou, D.; Soucemarianadin, L.; Cecillon, L. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 2017, 285, 50–56. [Google Scholar] [CrossRef]
- Wu, H.M.; Chang, S.; Li, Q.H.; Wang, H.; Chen, C.; Wen, X.F. Physical and Chemical Properties of Soils Derived from Different Parent Rocks Mediate Microbial Carbon Cycling. Water Air Soil Pollut. 2024, 235, 519. [Google Scholar] [CrossRef]
- Gu, C.H.; Hart, S.C.; Turner, B.L.; Hu, Y.F.; Meng, Y.; Zhu, M.Q. Aeolian dust deposition and the perturbation of phosphorus transformations during long-term ecosystem development in a cool, semi-arid environment. Geochim. Cosmochim. Acta 2019, 246, 498–514. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
- Attiwill, P.M. The Loss of Elements from Decomposing Litter. Ecology 1968, 49, 142–145. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 2021, 154, 427–432. [Google Scholar] [CrossRef]
- Li, J.W.; Li, X.; Hao, G.S.; Zhang, F.F.; Ruan, L.; Manzoor; Wang, W.Z. Rhizosphere processes of tea (Camellia sinensis) plants under spatial heterogeneity of soil potassium. Rhizosphere 2020, 17, 100299. [Google Scholar] [CrossRef]
- Yang, Z.X.; Yu, S.Z.; Lin, Y.C.; Zhang, W.J.; Wang, Y.; Wang, R.G.; Xu, S.X.; Yang, T.Z.; Xue, G. Activation of potassium released from soil by root-secreted organic acids in different varieties of tobacco (Nicotiana tabacum). Funct. Plant Biol. 2020, 47, 318–326. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C.; Siccama, T.G.; Johnson, C.E.; Lovett, G.M.; Ryan, D.F.; Timothy Fahey, T.; Reiners, W.A. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 1994, 25, 61–125. [Google Scholar] [CrossRef]
- Li, W.S.; Liu, X.M.; Hu, Y.; Teng, F.Z.; Hu, Y.F.; Chadwick, O.A. Potassium isotope fractionation during chemical weathering in humid and arid Hawaiian regoliths. Geochim. Cosmochim. Acta 2022, 333, 39–55. [Google Scholar] [CrossRef]
- Zhao, H.L.; He, Y.H.; Zhou, R.L.; Su, W.Z.; Li, Y.Q.; Drake, S. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 2009, 77, 187–191. [Google Scholar] [CrossRef]
- Tang, J.; Davy, A.J.; Jiang, D.M.; Musa, A.; Wu, D.F.; Wang, Y.C.; Miao, C.P. Effects of excluding grazing on the vegetation and soils of degraded sparse-elm grassland in the Horqin Sandy Land, China. Agric. Ecosyst. Environ. 2016, 235, 340–348. [Google Scholar] [CrossRef]
- Tang, J.; Yin, J.Z.; Davy, A.J.; Pan, F.F.; Miao, R.H.; Han, X. Changes in soil fertility and microbial communities following cultivation of native grassland in Horqin Sandy Land, China: A 60-year chronosequence. Ecol. Proces. 2023, 12, 18. [Google Scholar] [CrossRef]
- Cao, C.Y.; Jiang, D.M.; Teng, X.H.; Jiang, Y.; Liang, W.J.; Cui, Z.B. Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Appl. Soil Ecol. 2008, 40, 78–85. [Google Scholar] [CrossRef]
Factor | Site (S) | Precipitation (P) | Time (t) (cov) | Soil Temp (cov) | S × P | S × t | P × t | S × P × t |
---|---|---|---|---|---|---|---|---|
F values | F1,886 | F6,886 | F1,9 | F1,886 | F6,886 | F1,886 | F6,886 | F6,886 |
Variable | ||||||||
Soil ΔC | 92.1 **** | 7.8 **** | 2.4 | 0.5 | 0.7 | 0.7 | 4.3 *** | 0.8 |
Soil ΔN | 3.1 * | 1.5 | 0.9 | <0.1 | 0.2 | 56.5 **** | 0.8 | 0.9 |
Soil ΔP | 4.1 ** | 6.2 **** | 0.1 | 77.3 **** | 0.4 | 0.1 | 4.0 *** | 0.8 |
Soil ΔK | 2.7 * | 5.5 **** | 2.6 | 103.2 **** | 0.4 | <0.1 | 12.3 **** | 1.0 |
Factor | Site (S) | Precipitation (Pr) | S × Pr |
---|---|---|---|
F values | F1,70 | F6,70 | F6,70 |
Variable | |||
Soil ΣΔC | 1956 **** | 166 **** | 14 **** |
Soil ΣΔN | 65 **** | 31 **** | 5 **** |
Soil ΣΔP | 74 **** | 112 **** | 7 **** |
Soil ΣΔK | 59 **** | 120 **** | 10 **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Roldán, E.; Wang, M.; Miyasaka, T.; Pan, Y.; Li, X.; Liu, B.; Qu, H. Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems. Agriculture 2024, 14, 2364. https://doi.org/10.3390/agriculture14122364
Medina-Roldán E, Wang M, Miyasaka T, Pan Y, Li X, Liu B, Qu H. Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems. Agriculture. 2024; 14(12):2364. https://doi.org/10.3390/agriculture14122364
Chicago/Turabian StyleMedina-Roldán, Eduardo, Meixin Wang, Takafumi Miyasaka, Yueming Pan, Xiang Li, Bing Liu, and Hao Qu. 2024. "Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems" Agriculture 14, no. 12: 2364. https://doi.org/10.3390/agriculture14122364
APA StyleMedina-Roldán, E., Wang, M., Miyasaka, T., Pan, Y., Li, X., Liu, B., & Qu, H. (2024). Precipitation Controls Topsoil Nutrient Buildup in Arid and Semiarid Ecosystems. Agriculture, 14(12), 2364. https://doi.org/10.3390/agriculture14122364