Biochar Addition to a Mediterranean Agroecosystem: Short-Term Divergent Priming Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Soil Description
2.2. Biochar Characterization
2.3. Experimental Design and Sampling
2.4. Carbon Dioxide Released from Soil Samples
2.5. Hot Water Extractable Carbon
2.6. Quantification of the Carbon Contribution Attributable to Biochar (fB) and Soil (fS) Using Isotope Partitioning
- fB: evolved carbon fraction attributable to pine or corn cob biochar in the biochar-amended soil (S + PB or S + ZB)
- δ13CS+B: δ13C of evolved CO2 from pine or corn cob biochar-amended soil (S + PB or S + ZB) in each sampling time for each incubation period
- δ13CS: δ13C of evolved CO2 from control soil (S) in each sampling time for the two incubation periods
- δ13CB: δ13C of pine or corn cob biochar (PB or ZB)
- fB: evolved CO2-C fraction attributable to pine or corn cob biochar in the biochar-amended soil (S + PB or S + ZB) for each sampling time of each incubation period
- fS: evolved CO2-C fraction attributable to native soil in the biochar-amended soil (S + PB or S + ZB) for each sampling time of each incubation period (Equation (1)).
2.7. Data Analysis
3. Results
3.1. CO2-C Evolved from Soil Incubation
3.2. Dissolved Organic Carbon
3.3. Carbon Isotopic Signature
3.3.1. δ13C of the Dissolved Organic Carbon
3.3.2. δ13C of Released CO2-C
3.4. Priming Effects of Biochar on Native Soil Organic C
4. Discussion
4.1. Biochar Origin and Production Temperature Explain the Short-Term Priming Effects Observed
4.2. Short-Term Priming Effects Observed and Underlying Process
4.3. Persistence of Priming Effects in the Medium-Term
4.4. Isotopic Signature Differential Evolution during the 250-Day Incubations
5. Conclusions
- Priming effects were observed in a Mediterranean agricultural soil amended with a pine wood and a corn cob biochars, with clear and contrasted short-term effects depending on the biochar applied and with a strong attenuation of such effects to slightly negative priming after two years.
- In the short-term, the distinct priming effects of the two biochars depended on the feedstock and pyrolysis temperature used for its production. Wood biochars produced at high temperatures exhibited negative priming, while grass biochars produced at low temperatures manifested positive priming.
- The short-term positive priming is hypothesized to be driven by the highest labile organic carbon content in ZB biochar compared to PB.
- In the medium-term experiments, the strong initial priming effects were strongly attenuated, transitioning to slight negative priming in both biochars. This outcome was anticipated after the depletion of the more labile carbon fraction in the more labile biochar and the promotion of physical protection processes by biochar that prevent priming.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Pell, M.; Stenström, J.; Granhall, U. Soil Respiration. In Microbiological Methods for Assessing Soil Quality; Bloem, J., Hopkins, D.W., Benedetti, A., Eds.; CABI: Wallingford, UK, 2006; pp. 117–126. [Google Scholar]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.F.; Zhu, W.Y.; Wang, J.K.; Liu, J.X.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef]
- Lehmann, J.J.; Joseph, S.; Stephen, J.; Joseph, S.; Stephen, J. Biochar for Environmental Management; Earthscan: London, UK, 2015; Volume 1. [Google Scholar]
- Shackley, S.; Sohi, S.; Ibarrola, R.; Hammond, J.; Mašek, O.; Brownsort, P.; Cross, A.; Prendergast-Miller, M.; Haszeldine, S. Biochar, Tool for Climate Change Mitigation and Soil Management. In Geoengineering Responses to Climate Change; Springer: New York, NY, USA, 2013; pp. 73–140. [Google Scholar]
- Fang, Y.; Singh, B.B.P.; Singh, B.B.P. Temperature sensitivity of biochar and native carbon mineralisation in biochar-amended soils. Agric. Ecosyst. Environ. 2014, 191, 158–167. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Qin, X.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 570, 1390–1401. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Zimmerman, A.R. Abiotic and Microbial Oxidation of Laboratory- Produced Black Carbon (Biochar). J. Environ. Sci. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Hamer, U.; Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 2005, 37, 445–454. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Brown, R.W.; Reed, E.Y.; Chadwick, D.R.; Hill, P.W.; Jones, D.L. Agronomic amendments drive a diversity of real and apparent priming responses within a grassland soil. Soil Biol. Biochem. 2024, 189, 109265. [Google Scholar] [CrossRef]
- Bingeman, C.W.W.; Varner, J.E.E.; Martin, W.P. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci. Soc. Am. J. 1953, 17, 34–38. [Google Scholar] [CrossRef]
- Cheng, W. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol. Biochem. 2009, 41, 1795–1801. [Google Scholar] [CrossRef]
- Dalenberg, J.W.; Jager, G. Priming effect of some organic additions to 14C-labelled soil. Soil Biol. Biochem. 1989, 21, 443–448. [Google Scholar] [CrossRef]
- Bruun, S.; Clauson-Kaas, S.; Bobuľská, L.; Thomsen, I.K. Carbon dioxide emissions from biochar in soil: Role of clay, microorganisms and carbonates. Eur. J. Soil Sci. 2014, 65, 52–59. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- McBeath, A.V.; Smernik, R.J.; Krull, E.S.; Lehmann, J. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study. Biomass Bioenergy 2014, 60, 121–129. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–23. [Google Scholar] [CrossRef]
- Luo, Y.; Zang, H.; Yu, Z.; Chen, Z.; Gunina, A.; Kuzyakov, Y.; Xu, J.; Zhang, K.; Brookes, P.C. Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biol. Biochem. 2017, 106, 28–35. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Yan, X.; Kuzyakov, Y. Carbon budget by priming in a biochar-amended soil. Eur. J. Soil Biol. 2016, 76, 26–34. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M.J.; Kirschbaum, M.U.F.; Wang, T.; van Hale, R. Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. GCB Bioenergy 2015, 7, 512–526. [Google Scholar] [CrossRef]
- Hilscher, A.; Heister, K.; Siewert, C.; Knicker, H. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org. Geochem. 2009, 40, 332–342. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Singh, N.; Abiven, S.; Maestrini, B.; Bird, J.A.; Torn, M.S.; Schmidt, M.W.I. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Glob. Chang. Biol. 2014, 20, 1629–1642. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2011, 41, 990–1000. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhan, Y.; Zhu, L. Reduced carbon sequestration potential of biochar in acidic soil. Sci. Total Environ. 2016, 572, 129–137. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J.; Kinyangi, J.M.; Cheng, C.H.; Thies, J.; Mugendi, D.N.; Pell, A. Soil organic C stabilization and thresholds in C saturation. Soil Biol. Biochem. 2009, 41, 2100–2104. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Maestrini, B.; Nannipieri, P.; Abiven, S. A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 2015, 7, 577–590. [Google Scholar] [CrossRef]
- Whitman, T.; Enders, A.; Lehmann, J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants. Soil Biol. Biochem. 2014, 73, 33–41. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Singh, B.P.; Krull, E. Biochar carbon stability in four contrasting soils. Eur. J. Soil Sci. 2014, 65, 60–71. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Werth, M.; Kuzyakov, Y. 13C fractionation at the root–microorganisms–soil interface: A review and outlook for partitioning studies. Soil Biol. Biochem. 2010, 42, 1372–1384. [Google Scholar] [CrossRef]
- Keith, A.; Singh, B.B.P.; Singh, B.B.P. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol. 2011, 45, 9611–9618. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Ge, T.; Kuzyakov, Y.; Nie, M.; Fang, C.; Tang, B.; Zhou, C. Interactions between biochar and litter priming: A three-source 14C and δ13C partitioning study. Soil Biol. Biochem. 2017, 104, 49–58. [Google Scholar] [CrossRef]
- Kerré, B.; Hernandez-Soriano, M.C.; Smolders, E. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A 13C study. Sci. Total Environ. 2016, 547, 30–38. [Google Scholar] [CrossRef]
- Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Raya-Moreno, I.; Cañizares, R.; Domene, X.; Carabassa, V.; Alcañiz, J.M. Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochars. Sci. Total Environ. 2017, 598, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, D.S.; Oades, J.M. A method for measuring adenosine triphosphate in soil. Soil Biol. Biochem. 1979, 11, 193–199. [Google Scholar] [CrossRef]
- Brown, R. Biochar Production Technology. In Biochar for Environmental Management; Routledge: Milton Park, UK, 2012; pp. 159–178. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Ghani, A.; Dexter, M.; Perrott, K. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Bieganowski, A.; Witkowska-Walczak, B.; Glinski, J.; Sokolowska, Z.; Slawinski, C.; Brzezinska, M.; Wlodarczyk, T. Database of Polish arable mineral soils: A review. Int. Agrophysics 2013, 27, 335–350. [Google Scholar] [CrossRef]
- Shindo, H. Elementary composition, humus composition, and decomposition in soil of charred grassland plants. Soil Sci. Plant Nutr. 1991, 37, 651–657. [Google Scholar] [CrossRef]
- Naisse, C.; Girardin, C.; Davasse, B.; Chabbi, A.; Rumpel, C. Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons. J. Soils Sediments 2014, 15, 825–832. [Google Scholar] [CrossRef]
- Rasul, M.; Cho, J.; Shin, H.; Hur, J. Biochar-induced priming effects in soil via modifying the status of soil organic matter and micro flora: A review. Sci. Total Environ. 2022, 805, 150304. [Google Scholar] [CrossRef]
- Cely, P.; Tarquis, A.M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G. Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth 2014, 5, 585–594. [Google Scholar] [CrossRef]
- Strosser, E. Methods for determination of labile soil organic matter: An overview. J. Agrobiol. 2010, 27, 49–60. [Google Scholar] [CrossRef]
- Jones, D.L.L.; Murphy, D.V.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Brunn, M.; Spielvogel, S.; Sauer, T.; Oelmann, Y. Temperature and precipitation effects on δ13C depth profiles in SOM under temperate beech forests. Geoderma 2014, 235–236, 146–153. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Luo, X.; Wang, Z.; Xing, B. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci. Total Environ. 2018, 610–611, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Khademalrasoul, A.; Naveed, M.; Heckrath, G.; Kumari, K.G.I.D.; de Jonge, L.W.; Elsgaard, L.; Vogel, H.J.; Iversen, B.V. Biochar Effects on Soil Aggregate Properties Under No-Till Maize. Soil Science 2014, 179, 1–11. [Google Scholar] [CrossRef]
- Du, Z.L.; Zhao, J.K.; Wang, Y.D.; Zhang, Q.Z. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Mackie, K.A.; Marhan, S.; Ditterich, F.; Schmidt, H.P.; Kandeler, E. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard. Agric. Ecosyst. Environ. 2015, 201, 58–69. [Google Scholar] [CrossRef]
- Farrell, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Singh, B.P.; Baumann, K.; Krull, E.S.; Baldock, J.A. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef]
- Glaser, B. Compound-specific stable-isotope (d13C) analysis in soil science. J. Plant Nutr. Soil Sci. 2005, 168, 633–648. [Google Scholar] [CrossRef]
Biochar Treatment | Total Organic Carbon (TOC) (g kg−1) | CO2-C/TOC (%) |
---|---|---|
July 2013 | ||
S | 9.77 ± 0.54 a | 6.6 a |
S + PB | 16.87 ± 2.56 b | 3.9 b |
S + ZB | 20.21 ± 2.37 b | 5.3 a |
July 2015 | ||
S | 9.80 ± 0.85 a | 3.7 a |
S + PB | 15.97 ± 1.23 b | 2.5 b |
S + ZB | 15.64 ± 2.03 b | 2.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raya-Moreno, I.; Cañizares, R.; Domene, X.; Carabassa, V.; Alcañiz, J.M. Biochar Addition to a Mediterranean Agroecosystem: Short-Term Divergent Priming Effects. Agriculture 2024, 14, 242. https://doi.org/10.3390/agriculture14020242
Raya-Moreno I, Cañizares R, Domene X, Carabassa V, Alcañiz JM. Biochar Addition to a Mediterranean Agroecosystem: Short-Term Divergent Priming Effects. Agriculture. 2024; 14(2):242. https://doi.org/10.3390/agriculture14020242
Chicago/Turabian StyleRaya-Moreno, Irene, Rosa Cañizares, Xavier Domene, Vicenç Carabassa, and Josep Maria Alcañiz. 2024. "Biochar Addition to a Mediterranean Agroecosystem: Short-Term Divergent Priming Effects" Agriculture 14, no. 2: 242. https://doi.org/10.3390/agriculture14020242
APA StyleRaya-Moreno, I., Cañizares, R., Domene, X., Carabassa, V., & Alcañiz, J. M. (2024). Biochar Addition to a Mediterranean Agroecosystem: Short-Term Divergent Priming Effects. Agriculture, 14(2), 242. https://doi.org/10.3390/agriculture14020242