Effects of Different Tillage Depths on Soil Physical Properties and the Growth and Yield of Tobacco in the Mountainous Chongqing Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Field and Lab Measurements
2.3.1. Soil Physical Properties
2.3.2. Spatial Distribution of Root Fresh Weight
2.3.3. Agronomical Traits of Tobacco
2.3.4. Plant Dry Matter Accumulation
2.3.5. Yield and Output Value
2.4. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.2. Root Growth and Spatial Distribution
3.3. Agronomic Traits
3.4. Dry Matter Accumulation
3.5. Yield and Output Values
4. Discussion
5. Conclusions
- (1)
- Deep tillage improves soil physical properties by increasing total porosity, capillary porosity, and soil water content in the 0–40 cm profile.
- (2)
- Deep tillage significantly simulates root growth and improves root spatial distribution, which is beneficial as it facilitates the absorption of water and nutrients by tobacco plants from deep soil layers.
- (3)
- Deep tillage significantly optimizes tobacco agronomic traits and promotes tobacco growth, development, and dry matter accumulation.
- (4)
- Deep tillage significantly increases tobacco yield and the proportion of medium-superior-grade leaves and consequently results in higher output values compared to tillage at traditional depths.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Wang, J.J.; Feng, X.B.; Zheng, L.C.; Deng, X.P.; Ma, E.; Tong, W.J. Effects of tillage methods on soil physical properties and spatial distribution of flue-cured tobacco (Nicotiana tabacum) roots in mountainous tobacco fields. Chin. J. Eco-Agric. 2019, 27, 1673–1681. [Google Scholar]
- Tong, W.J.; Deng, X.P.; Xu, Z.L.; Ma, E.; Jin, Y.; Li, J.Y. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco. Chin. J. Eco-Agric. 2016, 24, 1464–1472. [Google Scholar]
- Orzech, K.; Wanic, M.; Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 2021, 11, 666. [Google Scholar] [CrossRef]
- Zheng, B.; Jing, Y.; Zou, Y.; Hu, R.; Liu, Y.; Xiao, Z.; He, F.; Zhou, Q.; Tian, X.; Gong, J.; et al. Responses of tobacco growth and development, nitrogen use efficiency, crop yield and economic benefits to smash ridge tillage and nitrogen reduction. Agronomy 2022, 12, 2097. [Google Scholar] [CrossRef]
- Kuncoro, P.H.; Koga, K.; Satta, N.; Muto, Y. A study on the effect of compaction on transport properties of soil gas and water I: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil Tillage Res. 2014, 143, 172–179. [Google Scholar] [CrossRef]
- Salih, A.A.; Babikir, H.M.; Ali, S.A.M. Preliminary observations on effects of tillage systems on soil physical properties, cotton root growth and yield in Gezira Scheme, Sudan. Soil Tillage Res. 1998, 46, 187–191. [Google Scholar] [CrossRef]
- Adeoye, K.B.; Mohamed-Saleem, M.A. Comparison of effects of some tillage methods on soil physical properties and yield of maize and stylo in a degraded ferruginous tropical soil. Soil Tillage Res. 1990, 18, 63–72. [Google Scholar] [CrossRef]
- He, L.; Zhang, A.; Wang, X.; Li, J.; Hussain, Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J. Clean. Prod. 2019, 234, 297–305. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Mu, X.; Liu, K.; Li, C. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. Plant Soil Environ. 2013, 59, 295–302. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A. Root-restricting layers in German agricultural soils. Part II: Adaptation and melioration strategies. Plant Soil 2019, 442, 419–432. [Google Scholar] [CrossRef]
- Kahlon, M.S.; Khurana, K. Effect of land management practices on physical properties of soil and water productivity in wheat-maize system of northwest India. Appl. Ecol. Environ. Res. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Chen, T.; Zheng, Z.; Peng, G.; Zou, Y.; Tang, C.; Shan, X.; Zhou, Q.; Li, J. Responses of soil aggregates, organic carbon, and crop yield to short-term intermittent deep tillage in Southern China. J. Clean. Prod. 2021, 298, 126767. [Google Scholar] [CrossRef]
- Gong, J.; Zheng, Z.; Zheng, B.; Liu, Y.; Hu, R.; Gong, J.; Li, S.; Tian, L.; Tian, X.; Li, J.; et al. Deep tillage reduces the dependence of tobacco (Nicotiana tabacum L.) on arbuscular mycorrhizal fungi and promotes the growth of tobacco in dryland farming. Can. J. Microbiol. 2022, 68, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Xu, P.; Zhang, Z.; Li, S.; Xie, R.; Zhai, L.; Wei, B. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2017, 170, 167–174. [Google Scholar] [CrossRef]
- Jakobs, I.; Schmittmann, O.; Athmann, M.; Kautz, T.; Lammers, P.S. Cereal response to deep tillage and incorporated organic fertilizer. Agronomy 2019, 9, 296. [Google Scholar] [CrossRef]
- Fatumah, N.; Tilahun, S.A.; Mohammed, S. Water use efficiency, grain yield, and economic benefits of common beans (Phaseolus vulgaris L.) under four soil tillage systems in Mukono District, Uganda. Heliyon 2021, 7, e06308. [Google Scholar] [CrossRef] [PubMed]
- Eun, J.; Han, S.; Kang, N.; Kim, H.; Bae, J. Effects of deep tillage before planting on physicochemical properties of soil, growth and fruit Characteristics in cultivation of watermelon under plastic film house. J. Bio-Environ. Control 2010, 19, 130–134. [Google Scholar]
- Dhaliwal, J.; Kahlon, M.S.; Kukal, S.S. Deep tillage and irrigation impacts on soil water balance and water productivity of direct-seeded rice-wheat cropping system in north-west India. Soil Res. 2020, 58, 498–508. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Zhang, Y.; Ding, Y.; Luo, Y.; Song, L.; Liao, W. Effects of different tillage methods on tea garden soil physical characteristics and tea yield. Chin. J. Appl. Ecol. 2015, 26, 3723–3729. [Google Scholar]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Evans, R.G. Tillage depth effects on soil physical properties, sugarbeet yield, and sugarbeet quality. Commun. Soil Sci. Plant Anal. 2010, 41, 908–916. [Google Scholar] [CrossRef]
- Zhang, S.; Zuo, W.; Xu, G.; Wang, H.; Tan, Y. Analysis on comparative advantages of tobacco production in Chongqing. J. Anhui Agric. Sci. 2021, 49, 46–52. [Google Scholar]
- Chongqing Statistics Bureau; National Bureau of Statistics, Chongqing General Bureau of Investigation. Chongqing Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2022; pp. 156–167.
- Wang, L.; Guo, H.; Wang, L.; Cheng, D. Suitable tillage depth promotes maize yields by Changing soil physical and chemical properties in a 3-year experiment in the north China plain. Sustainability 2022, 14, 15134. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, L.; Dai, X.; Chen, K.; Yang, S.; Wang, C.; Yang, C.; Dai, Y.; Ding, W. Spatial-temporal distribution characteristics of soil moisture in dryland tobacco fields in the Wuling mountain area. Acta Tabacaria Sin. 2021, 27, 35–44. [Google Scholar]
- Liu, G. Tobacco Cultivation; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- FAO; ISSS; ISRIC. World Soil Resource Report No. 103. In World Reference Base for Soils Resources; FAO: Rome, Italy, 2006. [Google Scholar]
- Chongqing Tobacco Monopoly Bureau. Compilation of Scientific and Technological Achievements of Chongqing Tobacco Industry (1983–2012); Chongqing University Press: Chongqing, China, 2014. [Google Scholar]
- ASTM C29/C29M–09; Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. In Annual Book of ASTM Standards. Section 4: Soil and Rock, Vol. 04.08; American Society for Testing Materials: West Conshohocken, PA, USA, 2003.
- Bao, S. Soil Agro-Chemistry Analysis; Chinese Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Bohm, W. Methods of Studying Root Systems; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- State Tobacco Monopoly Administration. Leaf Tobacco—Determination of Strip Particle Size and Distribution—Area Method; China Standard Press: Beijing, China, 2012. [Google Scholar]
- Wei, G.; Hu, Y.; Wu, Y. Effects of double row concave ridge and different ridge height on growth, yield and quality of flue-cured tobacco in Qingzhen. Chin. Tillage Cultiv. 2020, 40, 40–44. [Google Scholar]
- State Tobacco Monopoly Administration. Flue-Cured Tobacco; China Standard Press: Beijing, China, 1992. [Google Scholar]
- Hassan, D.; Abboud, A.; Kadhem, H. Effect of tillage depths and addition of organic acids on some physical properties and yield of wheat (Triticum eastvum L.). IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 022018. [Google Scholar] [CrossRef]
- Verhulst, N.; Nelissen, V.; Jespers, N.; Haven, H.; Sayre, K.D.; Raes, D.; Deckers, J.; Govaerts, B. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil 2011, 344, 73–85. [Google Scholar] [CrossRef]
- Luo, J.; Lin, Z.; Que, Y.; Li, S.; Yao, K.; Jiang, Y.; Zhang, H.; Chen, J. Effect of subsoiling depths on soil physical characters and sugarcane yield. Chin. J. Appl. Ecol. 2019, 30, 405–412. [Google Scholar]
- Wang, H.; Wang, S.; Xu, Z.; Li, J. Effect of tillage and fertilization on water use efficiency of maize in dryland conditions. Chin. J. Eco-Agric. 2017, 25, 856–864. [Google Scholar]
- Lipiec, J.; Kus, J.; Słowinska-Jurkiewicz, A.; Nosalewicz, A. Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Shen, P.; Wu, Z.; Wang, C.; Luo, S.; Zheng, Y.; Yu, T.; Sun, X.; Sun, X.; Wang, C.; He, X. Contributions of rational soil tillage to compaction stress in main peanut producing areas of China. Sci. Rep. 2016, 6, 38629. [Google Scholar] [CrossRef]
- Wang, N.; Lan, J.; Wang, D.; Yang, D. Effect of different plowing depths on growth-development, yield and quality of flue-cured tobacco. Southwest China J. Agric. Sci. 2014, 27, 1737–1740. [Google Scholar]
- Liu, Z.; Zhou, Q.; Rang, Z.; Li, J.; Liu, Y.; Tang, C.; Zhong, Y. Effects of deep tillage on soil temperature and humidity, root development and economic traits of flue-cured tobacco. Chin. Tob. Sci. Technol. 2019, 52, 23–30. [Google Scholar]
- Sun, J.; Wang, C.; Chen, Z.; Li, G.; Sun, G.; Li, J.; Yü, J.; Qin, G. The influence of different tillage on soil and flue-cured tobacco. Chin. J. Hubei Univ. (Nat. Sci.) 2017, 39, 299–304. [Google Scholar]
- Han, F.; Liu, S.; Liu, P.; Pu, S.; Liu, X.; Zhao, M. Effects of different tillage practices on field soil moisture content and flue-cured tobacco growth, leaf yield and quality in Yanbian. Acta Tabacaria Sin. 2011, 17, 54–59. [Google Scholar]
- Zha, H.; Zhao, F.; Chen, X.; Tao, Y.; Li, W.; Gui, L.; Zhao, S.; Ni, X.; Lü, J. Effects of tillage depth on continuous cropping soil physical properties, flue-cured tobacco growth and development, yield and quality. Acta Agric. Boreali-Sin. 2019, 34, 250–254. [Google Scholar]
- Wang, R.; Ma, L.; Lv, W.; Li, J. Rotational tillage: A sustainable management technique for wheat production in the semiarid Loess Plateau. Agriculture 2022, 12, 1582. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, H.; Liu, K.; Zhang, J.; Dong, S.; Hu, C. Evolution of maize root distribution in space-time during maize varieties replacing in china. Acta Phytoecol. Sin. 2001, 25, 472–475. [Google Scholar]
- Qin, T.; Sun, C.; Bi, Z.; Wang, H.; Li, X.; Zeng, W.; Bai, J. Progresses of root imaging technology and the perspective application on potato root analysis. Chin. J. Nucl. Agric. Sci. 2019, 33, 412–419. [Google Scholar]
- Lu, W.; Dong, J.; Song, W.; Liu, K.; Zhang, Q.; Zhang, H.; Su, P.; Zhang, J.; Liang, H. Effects of Deep Soil Tillage and Straw Returning on Soil Physical Properties and Yield and Quality of Tobacco Leaves. Chin. Tob. Sci. 2019, 40, 25–32. [Google Scholar]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Botta, G.F.; Jorajuria, D.; Balbuena, R.; Ressia, M.; Ferrero, C.; Rosatto, H.; Tourn, M. Deep tillage and traffic effects on subsoil compaction and sunflower (Helianthus annus L.) yields. Soil Tillage Res. 2006, 91, 164–172. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, H.; Li, Q.; Cao, H.; Ma, J.; Ma, S.; Qiao, Y.; Jin, J.; Ren, P.; Song, Z.; et al. Tillage Practices Affected Yield and Water Use Efficiency of Maize (Zea mays L., Longdan No. 8) by Regulating Soil Moisture and Temperature in Semi-Arid Environment. Water 2023, 15, 3243. [Google Scholar] [CrossRef]
- Czubaeka, A. The use of the Polish germplasm collection of Nicotiana tabacum in research and tobacco breeding for disease resistance. Agriculture 2022, 12, 1994. [Google Scholar] [CrossRef]
- Jin, K.; Cornelis, W.M.; Schiettecatte, W.; Lu, J.; Yao, Y.; Wu, H.; Gabriels, D.; De Neve, S.; Cai, D.; Jin, J.; et al. Effects of different management practices on the soil-water balance and crop yield for improved dryland farming in the Chinese Loess Plateau. Soil Tillage Res. 2007, 96, 131–144. [Google Scholar] [CrossRef]
- Cai, H.; Ma, W.; Zhang, X.; Ping, J.; Yan, X.; Liu, J.; Yuan, J.; Wang, L.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Matyka, M. Biomass characteristics and energy yields of tobacco (Nicotiana tabacum L.) cultivated in eastern Poland. Agriculture 2020, 10, 551. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Sun, J.; Liu, Z.; He, X.; Qiao, J. Effects of tillage and sowing methods on soil physical properties and corn plant characters. Agriculture 2023, 13, 600. [Google Scholar] [CrossRef]
- Shang, G.; Zou, Q.; Zhang, J.; Wang, J.; Zhang, Y.; Liu, M.; Wang, S.; Zhang, D.; Wang, W.; Wang, Y. Effects of Tillage Depth on Nutrients and Microbial Communities in Tobacco-Planting Soil. Agric. Sci. 2023, 14, 1702–1715. [Google Scholar] [CrossRef]
- Yang, C. Characters and Impact on Tobacco Yield and Quality of the Main Ecological Factors in Chongqing Region. Ph.D. Thesis, Southwest University, Chongqing, China, 2012. [Google Scholar]
Year | Growing Stage | Treatment | Plant Height (cm) | Stem Girth (cm) | Maximum Leaf Area (cm2) | Effective Leaf Number |
---|---|---|---|---|---|---|
2022 | Rosette stage | T35 | 26.1 ± 0.2 a | 7.6 ± 0.2 a | 949.2 ± 41.1 a | 18.0 ± 0.0 a |
T25 | 26.4 ± 0.4 a | 8.0 ± 0.1 a | 948.7 ± 123.4 a | 17.5 ± 0.7 a | ||
T15 | 22.7 ± 0.6 b | 7.5 ± 0.4 a | 859.3 ± 36.2 b | 14.5 ± 0.0 b | ||
Budding stage | T35 | 68.2 ± 0.1 a | 8.8 ± 0.1 a | 1266.5 ± 26.7 a | 17.8 ± 1.1 a | |
T25 | 66.1 ± 0.6 a | 8.8 ± 0.0 a | 1261.3 ± 31.8 a | 16.3 ± 0.4 a | ||
T15 | 60.5 ± 0.5 b | 8.7 ± 0.1 a | 1162.7 ± 68.9 b | 14.3 ± 0.4 b | ||
Dome stage | T35 | 106.0 ± 2.8 a | 10.6 ± 0.5 a | 1391.3 ± 68.6 a | 17.5 ± 0.7 a | |
T25 | 105.8 ± 2.8 a | 10.4 ± 0.2 a | 1376.7 ± 24.5 a | 16.5 ± 0.0 a | ||
T15 | 94.4 ± 3.8 b | 10.1 ± 0.1 b | 1174.4 ± 40.4 b | 15.5 ± 0.7 b | ||
2023 | Rosette stage | T35 | 26.5 ± 2.7 a | 7.8 ± 0.1 a | 1522.2 ± 72.8 a | 13.3 ± 1.7 a |
T25 | 25.2 ± 0.7 a | 7.8 ± 0.1 a | 1392.9 ± 73.7 a | 13.7 ± 1.2 a | ||
T15 | 23.1 ± 0.5 b | 7.5 ± 0.2 b | 1295.7 ± 32.2 b | 13.0 ± 0.6 a | ||
Budding stage | T35 | 61.7 ± 6.1 a | 8.7 ± 0.2 a | 1677.3 ± 29.3 a | 16.5 ± 1.0 a | |
T25 | 57.7 ± 2.2 b | 8.8 ± 0.1 a | 1629.1 ± 35.4 a | 16.0 ± 0.0 a | ||
T15 | 54.2 ± 1.8 b | 8.5 ± 0.1 b | 1456.7 ± 19.3 b | 14.0 ± 1.6 b | ||
Dome stage | T35 | 102.3 ± 7.7 a | 10.9 ± 0.7 a | 1841.3 ± 45.3 a | 18.1 ± 1.0 a | |
T25 | 94.3 ± 1.8 ab | 10.6 ± 0.1 a | 1775.4 ± 41.9 a | 18.0 ± 1.0 a | ||
T15 | 91.5 ± 0.9 b | 10.0 ± 0.2 b | 1534.3 ± 21.4 b | 15.7 ± 1.2 b |
Year | Growing Stage | Treatment | Root (g) | Stem (g) | Leaf (g) | Total (g Plant−1) |
---|---|---|---|---|---|---|
2022 | Rosette stage | T35 | 9.7 ± 0.4 a | 11.6 ± 2.2 a | 42.1 ± 8.0 a | 62.3 ± 9.8 a |
T25 | 8.4 ± 2.4 b | 10.0 ± 0.0 a | 41.4 ± 0.9 a | 60.8 ± 3.3 a | ||
T15 | 6.9 ± 2.4 b | 9.0 ± 1.5 b | 35.5 ± 10.7 b | 51.3 ± 14.6 b | ||
Budding stage | T35 | 22.6 ± 3.6 a | 27.3 ± 1.0 a | 83.3 ± 4.7 a | 133.2 ± 9.3 a | |
T25 | 19.6 ± 0.8 b | 27.9 ± 1.2 a | 82.3 ± 1.6 a | 129.8 ± 0.4 a | ||
T15 | 17.2 ± 6.2 b | 21.6 ± 5.6 b | 76.9 ± 17 b | 115.7 ± 28.8 b | ||
Dome stage | T35 | 60.8 ± 19.8 a | 82.8 ± 3.7 a | 128.3 ± 10.4 a | 271.9 ± 36.5 a | |
T25 | 55.4 ± 0.4 b | 69.3 ± 8.9 b | 116.6 ± 16.8 b | 241.3 ± 17.5 b | ||
T15 | 51.3 ± 2.5 b | 62.7 ± 6.9 b | 97.9 ± 5.6 c | 221.9 ± 3.8 c | ||
2023 | Rosette stage | T35 | 2.0 ± 0.6 a | 1.7 ± 0.4 a | 10.2 ± 3.0 a | 13.9 ± 4.0 a |
T25 | 1.6 ± 0.3 b | 1.6 ± 0.8 a | 9.6 ± 2.5 a | 12.8 ± 3.0 a | ||
T15 | 1.2 ± 0.5 b | 0.9 ± 0.4 b | 7.8 ± 2.3 b | 9.9 ± 4.3 b | ||
Budding stage | T35 | 18.6 ± 12.0 a | 18.1 ± 6.1 a | 58.0 ± 11.9 a | 94.6 ± 30.0 a | |
T25 | 11.3 ± 0.6 b | 15.0 ± 0.5 b | 48.8 ± 1.3 b | 75.0 ± 2.5 b | ||
T15 | 10.5 ± 0.5 b | 10.8 ± 0.6 c | 44.6 ± 0.5 c | 65.9 ± 0.5 c | ||
Dome stage | T35 | 67.7 ± 19.7 a | 62.4 ± 10.7 a | 96.6 ± 13.2 a | 225.7 ± 12.1 a | |
T25 | 60.8 ± 1.1 b | 52.9 ± 1.8 b | 93.8 ± 2.8 b | 207.5 ± 5.7 b | ||
T15 | 52.9 ± 13.8 b | 40.1 ± 13.3 c | 59.4 ± 25 c | 132.3 ± 10.2 c |
2022 | 2023 | |||||
---|---|---|---|---|---|---|
Treatment | Yield (kg ha−1) | Output Value (CNY ha−1) | Proportion of Medium and Superior Grade Leaves (%) | Yield (kg ha−1) | Output Value (CNY ha−1) | Proportion of Medium and Superior Grade Leaves (%) |
T35 | 2311.5 ± 263.6 a | 68,742.0 ± 9272.6 a | 95.5 ± 1.7 a | 2210.5 ± 18.3 a | 63,973.0 ± 918.7 a | 94.2 ± 1.2 a |
T25 | 2100.0 ± 166.9 a | 60,666.0 ± 4972.5 a | 91.1 ± 2.8 a | 2068.2 ± 74.1 b | 58,838.8 ± 1298.0 b | 92.7 ± 2.1 a |
T15 | 1944.0 ± 203.3 b | 46,941.0 ± 5903.7 b | 81.5 ± 5.2 b | 1875.6 ± 21.4 c | 44,585.1 ± 982.3 c | 74.4 ± 4.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Zhao, W.; Ju, C.; Peng, K.; Yuan, M.; Tan, Q.; He, R.; Huang, M. Effects of Different Tillage Depths on Soil Physical Properties and the Growth and Yield of Tobacco in the Mountainous Chongqing Region of China. Agriculture 2024, 14, 276. https://doi.org/10.3390/agriculture14020276
Xiao Q, Zhao W, Ju C, Peng K, Yuan M, Tan Q, He R, Huang M. Effects of Different Tillage Depths on Soil Physical Properties and the Growth and Yield of Tobacco in the Mountainous Chongqing Region of China. Agriculture. 2024; 14(2):276. https://doi.org/10.3390/agriculture14020276
Chicago/Turabian StyleXiao, Qingli, Weihao Zhao, Chenyi Ju, Kui Peng, Ming Yuan, Qizhong Tan, Rong He, and Mingbin Huang. 2024. "Effects of Different Tillage Depths on Soil Physical Properties and the Growth and Yield of Tobacco in the Mountainous Chongqing Region of China" Agriculture 14, no. 2: 276. https://doi.org/10.3390/agriculture14020276
APA StyleXiao, Q., Zhao, W., Ju, C., Peng, K., Yuan, M., Tan, Q., He, R., & Huang, M. (2024). Effects of Different Tillage Depths on Soil Physical Properties and the Growth and Yield of Tobacco in the Mountainous Chongqing Region of China. Agriculture, 14(2), 276. https://doi.org/10.3390/agriculture14020276