Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Soil Data and Analysis
2.2.1. Analytical Methods
2.2.2. Statistical Analysis
3. Results
3.1. Traditional Olive Orchards versus Hedgerow Olive Orchards
3.1.1. pH
3.1.2. Soil Organic Matter (SOM)
3.1.3. Electrical Conductivity (EC)
3.1.4. Extractable P, K, Ca, Mg, and Na
3.1.5. Extractable Cd, Cu, Fe, Zn, Pb, Ni, and Mn
3.2. Hedgerow Olive Orchard versus Other Irrigated Crops (Corn, Tomato, Cereals, Others)
3.2.1. pH
3.2.2. Electrical Conductivity (EC)
3.2.3. Soil Organic Matter (SOM)
3.2.4. Extractable P, K, Ca, Mg, and Na
4. Discussion
4.1. Traditional Olive Orchard versus Hedgerow Olive Orchards
4.1.1. pH
4.1.2. Soil Organic Matter (SOM)
4.1.3. Electrical Conductivity (EC)
4.1.4. Extractable P, K, Ca, Mg, and Na
4.1.5. Extractable Cd, Cu, Fe, Zn, Pb, Ni, and Mn
4.2. Hedgerow Olive Orchards versus Other Irrigated Crops (Corn, Tomato, Cereals, Others)
4.2.1. pH
4.2.2. Electrical Conductivity (EC)
4.2.3. Soil Organic Matter (SOM)
4.2.4. Extractable P, K, Ca, Mg, and Na
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Loumou, A.; Giourga, C. Olive groves: “The life and identity of the Mediterranean”. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Connor, D.J.; Ferreres, E. 2010. The physiology of adaptation and yield expression in olive Hortic. Rev. 2010, 31, 155–229. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Hermoso, J.F. New trends in olive orchard design for continuous mechanical harvesting. Adv. Hortic. Sci. 2010, 24, 43–52. [Google Scholar]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Fernandez Escobar, R.; De la Rosa, R.; Leon, L.; Gomez, J.A.; Testi, F.; Orgaz, M.; Gil-Ribes, J.A.; Quesada Moraga, E.; Trapero, A. Evolution and sustainability of the olive production systems. Options Méditerr. Sér. A Sémin. Méditerr. 2013, 106, 11–42. [Google Scholar]
- Gómez, J.; Sobrinho, T.; Giráldez, J.; Fereres, E. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Cameira, M.R.; Pereira, A.; Ahuja, L.; Ma, L. Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions. Agri. Water Manag. 2014, 146, 346–360. [Google Scholar] [CrossRef]
- Rallo, L.; Caruzo, T.; Diez, C.M.; Campisi, G. Olive growing in a time of change: From empiricism to genomics. In The Olive Tree Genome; Rugini, L.B., Muleo, R., Sebastiani, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 55–64. [Google Scholar]
- Kavvadias, V.; Papadopoulou, M.; Vavoulidou, E.; Theocharopoulos, S.; Repas, S.; Koubouris, G.; Psarras, G.; Kokkinos, G. 2018. Effect of addition of organic materials and irrigation practices on soil quality in olive groves. J. Water Clim. Chang. 2018, 9, 775–785. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Rescia, A. Ecological and Economic Sustainability in Olive Groves with Different Irrigation Management and Levels of Erosion: A Case Study. Sustainability 2019, 11, 4681. [Google Scholar] [CrossRef]
- Morgado, R.; Santana, J.; Porto, M.; Sanchez-Oliver, J.S.; Reino, L.; Herrera, J.M.; Rego, F.; Beja, P.; Moreira, F. A Mediterranean silent spring? The effects of olive farming intensification on breeding bird communities. Agric. Ecosyst. Environ. 2020, 288, 106694. [Google Scholar] [CrossRef]
- Morgado, R.; Ribeiro, P.F.; Santos, J.L.; Rego, F.; Beja, P.; Moreira, F. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 2022, 225, 104429. [Google Scholar] [CrossRef]
- Vila-Traver, J.; Aguilera, E.; Infante-Amate, J.; de Molina, M.G. Climate change and industrialization as the main drivers of Spanish agriculture water stress. Sci. Total Environ. 2021, 760, 143399. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Kuster, M.; Alvarenga, P.; Palma, V.L.; Fernandes, R.M.; Soares, A.M.V.M.; López de Alda, M.J.; Barceló, D.; Barbosa, I.R. Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (South of Portugal) using on-line solid phase extraction-liquid chromatographytandem mass spectrometry. Environ. Int. 2009, 35, 545–551. [Google Scholar] [CrossRef]
- Vanwalleghem, T.; Amate, J.I.; de Molina, M.G.; Fernandez, D.S.; Gomez, J.A. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agric. Ecosys. Environ. 2011, 142, 341–351. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C. Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends. Agric. Water Manag. 2019, 217, 265–281. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef]
- Nunes, J. Los Suelos del Perimetro Regable del Caia (Portugal): Tipos, Fertilidad e Impacto del Riego en sus Propriedades Químicas. Ph.D. Thesis, Universidad de Extremadura, Badajoz, Spain, 2003. [Google Scholar]
- Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali-Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H. Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 2019, 219, 76–88. [Google Scholar] [CrossRef]
- Telo da Gama, J.; Rato Nunes, J.; Loures, L.; Lopez Piñeiro, A.; Vivas, P. Assessing Spatial and Temporal Variability for Some Edaphic Characteristics of Mediterranean Rainfed and Irrigated Soils. Agronomy 2019, 9, 132. [Google Scholar] [CrossRef]
- Tedeschi, A.; Dell’Aquila, R. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agric. Water Manag. 2005, 77, 308–322. [Google Scholar] [CrossRef]
- Chemura, A.; Kutywayo, D.; Chagwesha, T.; Chidoko, P. An Assessment of Irrigation Water Quality and Selected Soil Parameters at Mutema Irrigation Scheme, Zimbabwe. J. Water Resor. Prot. 2014, 6, 132–140. [Google Scholar] [CrossRef]
- Bogunovic, I.; Leon, T.; Pereira, P.; Vilim, F.; Lana, F.; Aleksandra, P.; Boris, D.; Márta, B.; Igor, D.; and Comino, J.R. Land management impacts on soil properties and initial soil erosion processes in olives and vegetable crops. J. Hydrol. Hydromech 2020, 68, 328–337. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Telo da Gama, J.; Loures, L.; López-Piñeiro, A.; Nunes, J.R. Assessing the Role of Phosphorus as a Macropollutant in Four Typical Mediterranean Basin Soils. Sustainability 2021, 13, 10973. [Google Scholar] [CrossRef]
- Buurman, P.; Van Lagen, B.; Velthorst, E.J. Manual for Soil and Water Analysis; Backhuys: Leiden, The Netherlands, 1996. [Google Scholar]
- Nelson, D.W.; Sommers, L. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties,(methodsofsoilan2). Ecol. Econ. 1982, 51, 167175. [Google Scholar]
- USDA. Soil Survey Laboratory Methods Manual. In Soil Survey Investigation Report no 42, 3rd ed.; United States Department of Agriculture: Washington, DC, USA, 1996; p. 692. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Investigations on chemical soil analysis as the basis for estimating soil fertility. II. Chemical extraction methods for phosphorus and potassium determination. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Mod. Anal. 2011, 2, 21–33. [Google Scholar]
- Cramer, D. Fundamental Statistics for Social Research: Step-By-Step Calculations and Computer Techniques Using SPSS for Windows; Routledge: London, UK, 2003. [Google Scholar]
- Cramer, D.; Howitt, D.L. The Sage Dictionary of Statistics: A Practical Resource for Students in the Social Sciences; Sage: Newcastle upon Tyne, UK, 2004. [Google Scholar]
- Doane, D.P.; Seward, L.E. Measuring skewness: A forgotten statistic? J. Stat. Educ. 2011, 19, 1–18. [Google Scholar] [CrossRef]
- Nordstokke, D.W.; Zumbo, B.D. A new nonparametric Levene test for equal variances. Psicologica: Int. J. Meth. Exp. Psychol. 2010, 31, 401–430. [Google Scholar]
- Nordstokke, D.W.; Zumbo, B.D.; Cairns, S.L.; Saklofske, D.H. The operating characteristics of the nonparametric Levene test for equal variances with assessment and evaluation data. Pract. Asses. Res. Eval. 2011, 16, 5. [Google Scholar]
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef] [PubMed]
- Ziska, L.H.; Bradley, B.A.; Wallace, R.D.; Bargeron, C.T.; LaForest, J.H.; Choudhury, R.A.; Garrett, K.A.; Vega, F.E. Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. Agronomy 2018, 8, 152. [Google Scholar] [CrossRef]
- Yadav, D.S.; Jaiswal, B.; Gautam, M.; Agrawal, M. Soil Acidification and its Impact on Plants. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Arrúe, J.L.; Álvaro-Fuentes, J. Tillage and 605 Irrigation System Effects on Soil Carbon Dioxide (CO2) and Methane (CH4) Emissions in a Maize Monoculture 606 under Mediterranean Conditions. Soil Tillage Res. 2020, 196, 104488. [Google Scholar] [CrossRef]
- Sobreiro, J.; Patanita, M.I.; Patanita, M.; Tomaz, A. Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches. Water 2023, 15, 2486. [Google Scholar] [CrossRef]
- Castro, J.; Fernández-Ondoño, E.; Rodríguez, C.; Lallena, A.M.; Sierra, M.; Aguilar, J. Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaén (Spain). Soil Tillage Res. 2008, 98, 56–67. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195, 104840. [Google Scholar] [CrossRef]
- Yu, O.T.; Greenhut, R.F.; O’Geen, A.T.; Mackey, B.; Horwath, W.R.; Steenwerth, K.L. Precipitation Events, Soil Type, and Vineyard Management Practices Influence Soil Carbon Dynamics in a Mediterranean Climate (Lodi, 597 California). Soil Sci. Soc. Am. J. 2019, 83, 772–779. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; De Parri, I.; Jarvis, P.G.; Valentini, R. Annual Variation in Soil Respiration and Its Components in a Coppice Oak Forest in Central Italy. Glob. Chang. Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- McGill, B.M.; Hamilton, S.K.; Millar, N.; Robertson, G.P. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest US row cropping system. Global Chang. Biol. 2018, 24, 5948–5960. [Google Scholar] [CrossRef]
- Francaviglia, R.; Di Bene, C.; Farina, R.; Salvati, L. Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: A data mining approach. Nutr. Cycl. Agroecosyst 2017, 107, 125–137. [Google Scholar] [CrossRef]
- Rotenberg, D.; Cooperband, L.; Stone, A. Dynamic relationships between soil properties and foliar disease as affected by annual additions of organic amendment to a sandy-soil vegetable production system. Soil Biol. Biochem. 2005, 37, 1343–1357. [Google Scholar] [CrossRef]
- Evrendilek, F.; Celik, I.; Kilic, S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J. Arid Environ. 2004, 59, 743–752. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Morell, F.; Plaza-Bonilla, D.; Arrúe, J.; Cantero-Martínez, C. Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics. Soil Tillage Res. 2012, 120, 32–39. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Dennis, S.; Reddy, K.C. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis. Global Ecol. Biogeogr. 2017, 26, 713–728. [Google Scholar] [CrossRef]
- Tekaya, M.; Mechri, B.; Dabbaghi, O.; Mahjoub, Z.; Laamari, S.; Chihaoui, B.; Boujnah, D.; Hammami, M.; Chehab, H. Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality. Agric. Water Manag. 2016, 178, 180–188. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur J Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyhu, Y.; Ben-Gal, A.; Dag, A. Olive fertilization under intensive cultivation management. Acta Hortic. 2018, 1217, 207–224. [Google Scholar] [CrossRef]
- Kawy, W.; Ali, R.R. Assessment of soil degradation and resilience at northeast Nile Delta, Egypt: The impact on soil productivity. Egyp. J. Remote Sens. Space Sci. 2012, 15, 19–30. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Martins, J.C. A salinização do solo em Portugal. Causas, extensão e soluções. Rev. Ciênc. Agrár. 2015, 28, 574–586. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Martín, J.A.; Ramos-Miras, J.J.; Boluda, R.; Gil, C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013, 200, 180–188. [Google Scholar] [CrossRef]
- Jebreen, H.; Wohnlich, S.; Banning, A.; Wisotzky, F.; Niedermayr, A.; Ghanem, M. Recharge, geochemical processes and water quality in karst aquifers: Central West Bank, Palestine. Environ. Earth Sci. 2018, 77, 261. [Google Scholar] [CrossRef]
- Carreira, J.; Lajtha, K.; Niell, X. Phosphorus transformations along a soil/vegetation series of fire-prone, dolomitic, semi-arid shrublands of southern Spain Soil P and Mediterranean shrubland dynamic. Biogeochemistry 1997, 39, 87–120. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Shdiefat, S.; Rawashdeh, H.; Bashabsheh, I. Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content. Agric. Water Manag. 2016, 176, 163–169. [Google Scholar] [CrossRef]
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; NSW University Press: Sydney, NSW, Australia, 1995; ISBN 0851989063. [Google Scholar]
- Lagacherie, P.; Álvaro-Fuentes, J.; Annabi, M.; Bernoux, M.; Bouarfa, S.; Douaoui, A.; Grunberger, O.; Hammani, A.; Mrabet, R.; Sabur, M.; et al. Managing Mediterranean soil resources under global change: Expected trends and mitigation strategies. Reg. Environ. Chang. 2018, 18, 663–675. [Google Scholar] [CrossRef]
- Chhabra, R. Soil Salinity and Water Quality; Routledge: London, UK, 2017. [Google Scholar] [CrossRef]
- Santana, M.; Carvalho, J.; Souza, K.; Vasconcelos, C.; Andrade, L. Efeitos da salinidade da água de irrigação na brotação e desenvolvimento inicial da cana-de-açúcar (Saccharum spp.) e em solos com diferentes níveis texturais. Ciênc. Agrotecnol. 2007, 31, 1470–1476. [Google Scholar] [CrossRef]
- Ayars, J.E.; Hutmacher, R.B.; Schoneman, R.A.; Vail, S.S.; Pflaum, T. Long term use of saline water for irrigation. Irrig. Sci. 1993, 14, 27–34. [Google Scholar] [CrossRef]
- Ferjani, N.; Daghari, H.; Hammami, M. Assessment of Actual Irrigation Management in Kalâat El Andalous District (Tunisia): Impact on Soil Salinity and Water Table Level. J. Agric. Sci. 2013, 5, 46. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Alvarez Rogel, J.; Castillo, V.; Albadalejo, J. Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid mediterranean soil. Biogeochemistry 2002, 61, 309–321. [Google Scholar] [CrossRef]
- Singh, B. Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Arrúe, J.; Moret, D.; Paustian, K. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agric. Ecosyst. Environ. 2009, 134, 211–217. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Pena, D.; Albarran, A.; Lopez-Pineiro, A.; Rato-Nunes, J.M.; Sanchez-Llerena, J.; Becerra, D. Impact of oiled and de-oiled olive mill waste amendments on the sorption, leaching, and persistence of S-metolachlor in a calcareous clay soil. J. Environ. Sci. Health Part B 2013, 48, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Torent, J. Dinâmica do Fósforo No Solo: Prespeivas Agronómica e Ambiental; IPCB: Castelo Branco, Portugal, 2010; ISBN 978-989-8196-10-1. [Google Scholar]
- Butusov, M.; Jernelöv, A. Phosphorus: An Element That Could Have Been Called Lucifer; Springer Briefs in Environmental Science: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Abd El–Mageed, T.S.A.; El-Sherif, A.; Ali, M.; Abd El-Wahed, M. 2017 Combined effect of deficit irrigation and potassium fertilizer on physiological response, plant water status and yield of soybean in calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 827–840. [Google Scholar] [CrossRef]
- Belaid, N.; Neel, C.; Kallel, M.; Ayoub, T.; Ayadi, A.; Baudu, M. Effects of treated wastewater irrigation on soil salinity and sodicity in Sfax (Tunisia): A case study. J. Water Sci. 2010, 23, 133–146. [Google Scholar] [CrossRef]
Crop | Water Consumption m3 ha−1 | N Fertilizer kg ha−1 | P Fertilizer kg ha−1 | K Fertilizer kg ha−1 | Average Yield Mg ha−1 | Irrigation System |
---|---|---|---|---|---|---|
Olive orchard—traditional | 0 | 50 | 50 | 30 | 0.8 | - |
Olive orchard—hedgerow | 3000 | 160 | 160 | 120 | 14 | Drip |
Corn | 8000 | 220 | 180 | 160 | 12 | Sprinkler |
Tomatoes/vegetables | 6500 | 200 | 180 | 200 | 85 | Drip |
Cereals | 2500 | 120 | 120 | 80 | 4 | Sprinkler |
Parameter | Mean Value | Min–Max |
---|---|---|
Temperature (°C) | 19.7 | 15.6–24.0 |
pH | 7.9 | 7.3–8.5 |
EC (dS m−1) | 0.20 | 0.19–0.21 |
Ca (mg L−1) | 18.7 | 16.3–23.4 |
Mg (mg L−1) | 6.7 | 5.7–7.2 |
Na (mg L−1) | 11.2 | 8.6–13.9 |
NO3- (mg L−1) | Vest–2.2 | |
Cl (mg L−1) | 18.4 | 17.7–20.2 |
HCO3 (mg L−1) | 63.5 | 58.6–70.7 |
P (mg L−1) | 5.0 | 4.5–5.4 |
K (mg L−1) | 2.7 | 2.2–3.1 |
SAR | 0.17 | 0.14–0.22 |
Parameter | Hedgerow Olive Orchard | Sig | Traditional Olive Orchard | Sig | ||
---|---|---|---|---|---|---|
2002 | 2012 | 2002 | 2012 | |||
Cd (mg kg−1) | 0.15 | 0.37 | NS | 0.17 | 0.13 | *** |
Cu (mg kg−1) | 2.6 | 4.1 | * | 1.4 | 4.6 | NS |
Fe (mg kg−1) | 38.6 | 52.1 | * | 60.0 | 67.2 | NS |
Zn (mg kg−1) | 0.74 | 3.93 | NS | 0.71 | 1.40 | ** |
Pb (mg kg−1) | 2.9 | 3.6 | NS | 3.3 | 3.7 | NS |
Ni (mg kg−1) | 2.9 | 4.8 | *** | 2.0 | 1.8 | *** |
Mn (mg kg−1) | 52.0 | 57.9 | NS | 48.0 | 64.6 | *** |
Parameter | CROP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maize | Tomato/Vegetable | Cereals | Olive | Others | Sig. | |||||||
2002 | 2012 | 2002 | 2012 | 2002 | 2012 | 2002 | 2012 | 2002 | 2012 | *** | *** | |
pH | 6.52aA | 6.74aB | 6.59aA | 7.48bB | 6.97bA | 7.18bB | 7.12cA | 6.58abA | 6.67abA | 7.12bA | *** | *** |
EC (dS m−1) | 0.19baA | 0.24cbB | 0.19bA | 0.20bA | 0.11aA | 0.15aB | 0.15aA | 0.17abA | 0.12aA | 0.16abB | *** | *** |
SOM (g kg−1) | 11.9bA | 12.0bA | 10.4aA | 10.4aA | 14.6cA | 15.8cA | 16.2dB | 12.5bA | 14.2cB | 11.8bA | * | *** |
P(mg kg−1) | 164abA | 205abB | 165abA | 225bB | 181abA | 222bA | 133.6aA | 175.8aA | 232bA | 200abA | ** | *** |
K(mg kg−1) | 227.0bcA | 260.0cB | 197.3abA | 238.0bcA | 220.3bcA | 194.5aA | 231.3cB | 217.6abA | 179.0aA | 238.5bcB | *** | *** |
Ca(mg kg−1) | 2166aA | 2281aA | 2439aA | 4119cB | 3561bA | 2015aA | 3455bA | 3236bA | 2454aA | 2622aA | *** | NS |
Mg(mg kg−1) | 263aA | 285aA | 288abA | 295aA | 354cA | 294aA | 346cB | 278aA | 337bcB | 322aA | *** | *** |
Na(mg kg−1) | 46.4bA | 53.5cdB | 48.9bA | 50.6cdA | 37.5abA | 60.9cB | 32.5aA | 43.5bB | 41.3bA | 49.4bcA | *** | *** |
Year | F-values | Sig. | F-values | Sig. | F-values | Sig. | F-values | Sig. | F-values | Sig. | ||
pH | 7.80 | ** | 34.0 | *** | 15.9 | *** | 0.582 | NS | 0.004 | NS | ||
EC | 8.85 | ** | 0.079 | NS | 29.4 | *** | 2.52 | NS | 4.78 | * | ||
SOM | 0.002 | NS | 0.019 | NS | 0.641 | NS | 59.6 | *** | 6.13 | * | ||
P | 14.2 | *** | 4.76 | * | 3.36 | NS | 2.09 | NS | 1.26 | NS | ||
K | 10.4 | ** | 3.43 | NS | 2.50 | NS | 7.78 | ** | 7.99 | ** | ||
Ca | 0.931 | NS | 16.1 | *** | 0.050 | NS | 0.901 | NS | 3.37 | NS | ||
Mg | 2.77 | NS | 0.098 | NS | 3.41 | NS | 18.2 | *** | 9.38 | ** | ||
Na | 9.33 | ** | 0.196 | NS | 22.7 | *** | 32.4 | *** | 0.001 | NS |
Parameter | Maximum Value in Soil (mg kg−1) | ||
---|---|---|---|
5.0 < pH < 6.0 | 6.0 < pH < 7.0 | pH > 7.0 | |
Cadmium | 0.5 | 1 | 1.5 |
Copper | 15 | 50 | 100 |
Nickel | 20 | 50 | 70 |
Plumb | 50 | 70 | 100 |
Zinc | 60 | 150 | 200 |
Mercury | 0.1 | 0.5 | 1 |
Chromium | 30 | 60 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rato-Nunes, J.; Telo-da-Gama, J.; Peña, D.; Loures, L.; Albaran, A.; Fernández-Rodríguez, D.; Vicente, L.; López-Piñeiro, A. Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties. Agriculture 2024, 14, 251. https://doi.org/10.3390/agriculture14020251
Rato-Nunes J, Telo-da-Gama J, Peña D, Loures L, Albaran A, Fernández-Rodríguez D, Vicente L, López-Piñeiro A. Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties. Agriculture. 2024; 14(2):251. https://doi.org/10.3390/agriculture14020251
Chicago/Turabian StyleRato-Nunes, José, José Telo-da-Gama, David Peña, Luís Loures, Angel Albaran, Damian Fernández-Rodríguez, Luis Vicente, and António López-Piñeiro. 2024. "Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties" Agriculture 14, no. 2: 251. https://doi.org/10.3390/agriculture14020251
APA StyleRato-Nunes, J., Telo-da-Gama, J., Peña, D., Loures, L., Albaran, A., Fernández-Rodríguez, D., Vicente, L., & López-Piñeiro, A. (2024). Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties. Agriculture, 14(2), 251. https://doi.org/10.3390/agriculture14020251