Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Object and Experimental Site
2.2. Soil Sampling and Chemical Analysis
2.3. Statistical Analysis
2.4. Meteorological Conditions during the Experiment (1995–2022)
3. Results
3.1. Distribution of SOC Amounts for Different Land Uses and Depths
3.2. Distribution of Labile and Stable Humus Fractions by Arenosol Use and Depth
3.3. Qualitative Characteristics of Humus According to Different Land Uses of Arenosol
3.4. Cultivation and Abandonment Effects on Humification and Optical Properties of HS
4. Discussion
4.1. Humic Substance Quality in Agricultural Ecosystems of Arenosols
4.2. Humic Substance Quality in Natural Ecosystems of the Arenosol
4.3. Afforestation Effect on Humic Fractional Composition and Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Courcelle, S.V.R.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Lal, R.; Wakene Negassa, W.; Klaus Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; McBratney, B.; de Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L.; et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil. Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef]
- Kukuļs, I.; Kļaviņš, M.; Nikodemus, O.; Kasparinskis, R.; Brūmelis, G. Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia). Geoderma Reg. 2019, 15, e00213. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Raiesi, F. The quantity and quality of soil organic matter and humic substances following dry-farming and subsequent restoration in an upland pasture. Catena 2021, 202, 105249. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Bejger, R.; Debaene, G.; Smreczak, B. Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils. Agronomy 2021, 11, 1067. [Google Scholar] [CrossRef]
- Malou, O.P.; Chevallier, T.; Moulin, P.; Sebag, D.; Rakotondrazafy, M.N.; Badiane-Ndour, N.Y.; Thiam, A.; Chapuis-Lardy, L. Measuring the stability of soil organic carbon in Arenosols in the Senegalese Groundnut Basin. J. Arid. Environ. 2023, 213, 104978. [Google Scholar] [CrossRef]
- Dilly, O.; Gnaß, A.; Pfeiffer, E.-M. Humus accumulation and microbial activities in Calcari-Epigleyic Fluvisols under grassland and forest diked in for 30 years. Soil Biol. Biochem. 2005, 37, 2163–2166. [Google Scholar] [CrossRef]
- Don, A.; Scholten, T.; Schulze, E.-D. Conversion of cropland into grassland: Implications for soil organic-carbon stocks in two soils with different texture. J. Plant. Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Mielnik, L.; Hewelke, E.; Weber, J.; Oktaba, L.; Jonczak, J.; Podlasiński, M. Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agric. Ecosyst. Environ. 2021, 319, 107554. [Google Scholar] [CrossRef]
- Guillaume, T.; Makowski, D.; Libohova, Z.; Elfouki, S.; Fontana, M.; Leifeld, J.; Bragazza, L.; Sinaj, S. Carbon storage in agricultural topsoils and subsoils is promoted by including temporary grasslands into the crop rotation. Geoderma 2022, 422, 115937. [Google Scholar] [CrossRef]
- Rambaut, L.-A.E.; Vayssières, J.; Versini, A.; Salgado, P.; Lecomte, P.H.; Tillard, E. 15-year fertilization increased soil organic carbon stock even in systems reputed to be saturated like permanent grassland on Andosols. Geoderma 2022, 425, 116025. [Google Scholar] [CrossRef]
- Papierowska, E.; Szatyłowicz, J.; Ruta, M.; Łachacz, A.; Gnatowski, T.; Stańczyk, T. Water repellency of soils on unpaved roads in coniferous forests. Catena 2020, 195, 104784. [Google Scholar] [CrossRef]
- Vasconez Navas, L.K.; Becker, J.N.; Heger, A.; Grongroft, A.; Eschenbach, A. Are active and former floodplain soils of the lower middle Elbe similar? A study of soil characteristics and possible implications for forest restoration. Catena 2023, 222, 106814. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Mayer, H.; Blum, W.E.H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Barcena, T.G.; Kier, L.P.; Vesterdal, L.; Stefansdottir, H.M.; Gundersen, P.; Sigurdsson, B.D. Soil carbon stock change following afforestation in Northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 18, 2393–2405. [Google Scholar] [CrossRef]
- Lafleur, B.; Labrecque, M.; Arnold, A.A.; Bélanger, N. Organic Carbon Accumulation in Topsoil Following Afforestation with Willow: Emphasis on Leaf Litter Decomposition and Soil Organic Matter Quality. Forests 2015, 6, 769–793. [Google Scholar] [CrossRef]
- Varnagiryte-Kabašinskiene, I.; Žemaitis, P.; Armolaitis, K.; Stakenas, V.; Urbaitis, G. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests 2021, 12, 1562. [Google Scholar] [CrossRef]
- Adiyah, F.; Mich’eli, E.; Csorba, A.; Weldmichael, T.G.; Gyuricza, C.; Ocansey, C.M.; Dawoe, E.; Owusu, S.; Fuchs, M. Effects of land-use change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catena’s in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena 2022, 216, 106366. [Google Scholar] [CrossRef]
- Knist, S.; Goergen, K.; Simmer, C. Evaluation and projected changes of precipitation statistics in convection permitting WRF climate simulations over Central Europe. Clim. Dyn. 2020, 55, 325–341. [Google Scholar] [CrossRef]
- Riedel, T.; Weber, T.K.D. Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeol. J. 2020, 28, 1939–1959. [Google Scholar] [CrossRef]
- Bevacqua, E.; Zappa, G.; Lehner, F.; Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Chang. 2022, 12, 350–355. [Google Scholar] [CrossRef]
- Plunge, S.; Gudas, M.; Povilaitis, A. Expected Climate Change Impacts on Surface Water Bodies in Lithuania. Ecohydrol. Hydrobiol. 2021, 22, 246–268. [Google Scholar] [CrossRef]
- Tao, Z.-Y.; Zhang, J.; Zhai, J.-J. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 1999, 395, 199–203. [Google Scholar] [CrossRef]
- Zalba, P.; Amiotti, N.M.; Juan, A.; Galantini, J.A.; Pistolaore, S. Soil Humic and Fulvic Acids from Different Land-Use Systems Evaluated By E4/E6 Ratios. Commun. Soil Sci. Plant Anal. 2016, 47, 1675–1679. [Google Scholar] [CrossRef]
- Liaudanskiene, I.; Zukaitis, T.; Velykis, A.; Satkus, A.; Parasotas, I. The impact of tillage practices on the distribution of humified organic carbon in a clay loam. Zemdirbyste 2021, 108, 11–18. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Karcauskiene, D.; Slepetiene, A.; Vilkiene, M.; Repsiene, R.; Braziene, Z.; Anne, O. Influence of Liming Intensity on Fractions of Humified Organic Carbon in Acid Soil: A Case Study. Sustainability 2022, 14, 5297. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Tripolskaja, L.; Kazlauskaite-Jadzevice, A.; Baksiene, E.; Razukas, A. Changes in organic carbon in mineral topsoil of a formerly cultivated Arenosol under different land uses in Lithuania. Agriculture 2022, 12, 488. [Google Scholar] [CrossRef]
- Nikitin, B.A. Methods for soil humus determination. AgroChemistry 1999, 3, 156–158. (In Russian) [Google Scholar]
- Ponomareva, V.V.; Plotnikova, T.A. Humus and Soil Formation; Nauka: Leningrad, Russia, 1980; p. 220. [Google Scholar]
- Slepetiene, A.; Slepetys, J. Status of humus in soil under various long-term tillage systems. Geoderma 2005, 127, 207–215. [Google Scholar] [CrossRef]
- Kalisz, B.; Urbanowicz, P.; Smólczyński, S.; Orzechowski, M. Impact of siltation on the stability of organic matter in drained peatlands. Ecol. Indic. 2021, 130, 108149. [Google Scholar] [CrossRef]
- Bukantis, A.; Kažys, J. 330 Years of Vilnius’ Climate: History and Future. Vilnius Univ. Proc. 2020, 10, 10. [Google Scholar] [CrossRef]
- Bagherifam, S.; Brown, T.C.; Bagherifam, S.; Baglieri, A. Sequential extraction of labile and recalcitrant fractions of soil organic matter: A case study focusing on antimony (Sb) in humic acids, fulvic acids and humin fractions of long-term aged, contaminated soils. Environ. Pollut. 2023, 327, 121610. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Jerzykiewicz, M.; Ukalska-Jaruga, A.; Ćwieląg-Piasecka, I.; Jamroz, E.; Kocowicz, A.; Debicka, M.; Bekier, J.; Mielnik, L.; Bejger, R.; et al. Molecular characteristics of humin fraction isolated from soils of temperate climate: A study on Chernozems and Phaeozems in Poland. Authorea 2023. [Google Scholar] [CrossRef]
- Litvinovich, A.; Pavlova, O.; Lavrishchev, A.; Bure, V.; Saljnikov, E. Empirical models of transformations of humic acids and humin in Umbric Albeluvisol Abruptic as influenced by liming. Zemdirbyste 2017, 104, 115–122. [Google Scholar] [CrossRef]
- Han, B.; Kitamura, K.; Hirota, M.; Shen, H.; Tang, Y.; Suzuki, T.; Fujitake, N. Humus composition and humification degree of humic acids of alpine meadow soils in the northeasten part of the Qinghai-Tibet Plateau. Soil Sci. Plant Nutr. 2019, 65, 11–19. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Antonić, O. Determination of soil C: N suitability zones for organic farming using an unsupervised classification in eastern Croatia. Ecol. Indic. 2021, 123, 107382. [Google Scholar] [CrossRef]
- Amorim, H.C.S.; Araujo, M.A.; Lal, R.; Zinn, Y.L. What C: N ratios in soil particle-size fractions really say: N is preferentially sorbed by clays over organic C. Catena 2023, 230, 107230. [Google Scholar] [CrossRef]
- Amorim, H.C.S.; Hurtarte, L.C.C.; Souza, I.F.; Zinn, Y.L. C: N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma 2022, 425, 116026. [Google Scholar] [CrossRef]
- Oktaba, L.; Odrobińska, D.; Uzarowicz, Ł. The impact of different land uses in urban area on humus quality. J. Soils Sediments 2018, 18, 2823. [Google Scholar] [CrossRef]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land-use changes influencing C sequestration and quality in topsoil and subsoil. J. Agron. 2019, 9, 520. [Google Scholar] [CrossRef]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977, 41, 352. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition and Reactions; John Wiley and Sons Publications: New York, NY, USA, 1994; p. 496. [Google Scholar]
- Murty, D.; Kirschbaum, M.U.F.; McMurtrie, R.E. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Datta, A.; Choudhury, M.; Sharma, P.C.; Priyanka, H.S.; Jat, M.L.; Kar, S. Stability of humic acid carbon under conservation agriculture practices. Soil Tillage Res. 2022, 216, 105240. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Klimkowicz-Pawlas, A.; SMreczak, B. Characterization of organic matter fractions in the top layer of soils under different land uses in Central-Eastern Europe. Soil Use Manag. 2019, 35, 595–606. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in Relationships between Humic Substances and Soil Structure following Different Mineral Fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Di Donato, N.; Chen, H.; Waggoner, D.; Patrick, G.; Hatcher, P.G. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta. 2016, 178, 210–222. [Google Scholar] [CrossRef]
- Martin, D.; Srivastava, P.C.; Ghosh, D.; Zech, W. Characteristics of humic substances in cultivated and natural forest soils of Sikkim. Geoderma 1998, 84, 345–362. [Google Scholar] [CrossRef]
- Nikodemus, O.; Kasparinskis, R.; Kukuls, I. Influence of afforestation on soil genesis, morphology and properties in glacial till deposits. Arch. Agron. Soil Sci. 2013, 59, 449–465. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar] [CrossRef]
Land Use Systems and Total Size of Each Land Use Site | Land Uses |
---|---|
Non-fertilised Cropland Cultivation (CCunfert) (200 m2) | Various agricultural plants (Secale cereale L., Hordeum vulgare L., Triticosecale wittmack, Triticum aestivum L. Fagopyrum esculentum Moench, Solanum tuberosum L., Brassica napus L., Lupinus angustifolius L., Trifolium pratense, Lupinus angustifolius L., Secale cereale L., Hordeum vulgare L., and Trifolium pratense) were cultivated in the cropland site. In order to increase the accumulation of SOC, since 2016, in CC, the five-field crop rotation of a 40% legume plant family was performed. One part of this site was unfertilised. In another part, a fertiliser application was used: N 0–100 kg ha−1, P—13–26 kg ha−1, and K—25–100 kg ha−1 (ammonium nitrate, granulate superphosphate, and potassium chloride, respectively). In 1995 and 2000, the cropland soil was fertilised with 40 t ha−1 manure. |
Fertilised Cropland Cultivation (CCfert) (200 m2) | |
Non-fertilised Cut Grassland Cultivation (GRunfert) (200 m2) | A grass–legume mixture (Medicago varia L., Festuca arundinacea Schreb., Bromus inermis Leyss, Festuca rubra L., and Dactylis glomerata L.) was grown in a cut grassland site. It was reduced twice during the vegetation period and resown as needed for approximately three decades. One part of this site was unfertilised. In another part, a fertiliser application was used: N60+30P40K1020. N60P40K1020 was applied at the beginning of grass vegetation. The grass was fertilised for a second time (N30) after the first grass cutting. |
Fertilised Cut Grassland Cultivation (GRfert) (200 m2) | |
Uncultivated Abandoned Land (UAL) (400 m2) | Uncultivated uncontrolled wild grass. It was reduced to only shrubs and trees, and sporadic wood cutting was performed according to the need in order to avoid overgrowth of trees (self-afforestation process). Biomass was left in the experimental area. |
Pine Afforestation Field (PA) (400 m2) | Afforested by pine trees (Pinus sylvestris L.). |
Land Use | ΣHA | ΣFA | ΣHA + ΣFA | ΣHA/ΣFA | “Aggressiveness” | |||||
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | % | |||||||||
0–15 cm | ||||||||||
CCunfert | 4.57 | dA | 2.68 | dA | 7.25 | eA | 1.71 | aA | 6.31 | aA |
CCfert | 5.12 | dA | 3.47 | cA | 8.59 | dA | 1.48 | aA | 6.2 | aA |
GRunfert | 6.06 | cA | 3.61 | cA | 9.67 | cA | 1.69 | aA | 5.76 | abA |
GRfert | 6.39 | bcA | 3.71 | cA | 10.1 | cA | 1.73 | aA | 5.28 | bcA |
UAL | 7.22 | bA | 4.40 | bA | 11.6 | bA | 1.64 | aA | 5.03 | cB |
PA | 8.33 | aA | 5.41 | aA | 13.7 | aA | 1.54 | aA | 5.49 | bcB |
15–25 cm | ||||||||||
CCunfert | 3.86 | dB | 2.1 | dB | 5.96 | dB | 1.85 | aA | 4.89 | cB |
CCfert | 4.52 | cdA | 2.82 | cB | 7.35 | cB | 1.61 | bA | 4.12 | dB |
GRunfert | 5.27 | bcA | 3.27 | bA | 8.54 | bcA | 1.61 | bA | 5.78 | abA |
GRfert | 5.97 | abA | 3.6 | abA | 9.57 | abA | 1.65 | abA | 5.52 | bcA |
UAL | 5.65 | abB | 3.30 | bB | 8.95 | bB | 1.70 | abA | 6.03 | abA |
PA | 6.59 | aB | 3.74 | aB | 10.3 | aB | 1.76 | abA | 6.60 | aA |
Land Use | C/N | HD, % | E465 | E665 | E4/E6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
0–15 cm | 15–25 cm | 0–15 cm | 15–25 cm | 0–15 cm | 15–25 cm | 0–15 cm | 15–25 cm | 0–15 cm | 15–25 cm | |
CCunfert | 14.7 cA | 16.0 bcA | 30 bA | 26 bA | 0.117dA | 0.108 cA | 0.018 cA | 0.015 cA | 6.71 abA | 7.05 aA |
CCfert | 15.5 bcA | 14.8 bcA | 29 bA | 31 abA | 0.170 dA | 0.163 cA | 0.025 cA | 0.025 cA | 6.87 aA | 6.53 abcA |
GRunfert | 14.7 cA | 15.5 bcA | 33 abA | 33 aA | 0.262 cA | 0.244 bA | 0.041 bA | 0.038 bA | 6.39 abA | 6.44 bcA |
GRfert | 15.8 bcA | 13.6 cB | 32 abA | 35 aA | 0.320bcA | 0.276 bA | 0.048 bA | 0.041 bA | 6.73 abA | 6.90 abA |
UAL | 17.0 bA | 16.5 abA | 31 abA | 32 abA | 0.334 bA | 0.263 bA | 0.050 bA | 0.040 bA | 6.77 abA | 6.67 abcA |
PA | 19.8 aA | 18.6 aA | 36 aA | 26 bA | 0.465 aA | 0.375 aB | 0.074 aA | 0.060 aB | 6.26 bA | 6.31 cA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaleviciute-Volunge, K.; Tripolskaja, L.; Kazlauskaite-Jadzevice, A.; Slepetiene, A.; Baksiene, E. Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol. Agriculture 2024, 14, 250. https://doi.org/10.3390/agriculture14020250
Amaleviciute-Volunge K, Tripolskaja L, Kazlauskaite-Jadzevice A, Slepetiene A, Baksiene E. Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol. Agriculture. 2024; 14(2):250. https://doi.org/10.3390/agriculture14020250
Chicago/Turabian StyleAmaleviciute-Volunge, Kristina, Liudmila Tripolskaja, Asta Kazlauskaite-Jadzevice, Alvyra Slepetiene, and Eugenija Baksiene. 2024. "Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol" Agriculture 14, no. 2: 250. https://doi.org/10.3390/agriculture14020250
APA StyleAmaleviciute-Volunge, K., Tripolskaja, L., Kazlauskaite-Jadzevice, A., Slepetiene, A., & Baksiene, E. (2024). Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol. Agriculture, 14(2), 250. https://doi.org/10.3390/agriculture14020250