Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meta-Analysis
3. Results
3.1. Overall Effects of Straw Return on Crop Yield, SOC, and Soil Nutrients
3.1.1. Straw Return Effects on Crop Yield
3.1.2. Straw Return Effects on SOC and Soil Nutrients
3.2. Overall Effects of Manure Application on Crop Yield, SOC, and Soil Nutrients
3.2.1. Manure Application Effects on Crop Yield
3.2.2. Manure Application Effects on SOC and Soil Nutrients
3.3. Overall Effects of Straw Plus Manure on Crop Yield, SOC, and Soil Nutrients
3.4. Correlation Analysis
4. Discussion
4.1. Overall Effects of Straw Return on Crop Yield, SOC, and Soil Nutrients
4.1.1. Straw Return Overall Effects
4.1.2. Straw Duration
4.1.3. Straw Quantity
4.1.4. Straw Form
4.1.5. Straw Category
4.2. Overall Effects of Manure Application on Crop Yield, SOC, and Soil Nutrients
4.2.1. Manure Application Overall Effects
4.2.2. Manure Source
4.2.3. Manure Substitute Ratio of Chemical Fertilizer
4.2.4. Manure Duration
4.3. Overall Effects of Straw plus Manure on Crop Yield, SOC, and Soil Nutrients
4.4. Vista of Straw Return and Manure Application in China
4.5. Scientific Implication, Current Limitations, and Future Prospects
5. Conclusions
- (1)
- In terms of effect values, the rank of the three organic amendments could be described as straw return < the combination of straw and manure < manure application. All significantly increased the crop yield, SOC, and soil nutrient content; however, manure application resulted in the greatest increase.
- (2)
- In straw return, the optimal duration varied: <5 years was beneficial to improve crop yield, while ≥5 years increased TN the most. The optimal quantity was the low quantity of 3000–6000 kg ha−1. The optimal form varied: incorporation was beneficial to improve crop yield; biochar increased SOC more; and the optimal category was rice straw.
- (3)
- In manure application, pig manure was beneficial in improving crop yield, while chicken manure increased TN the most. The optimal substitution ratio was the high ratio of 50–80%, and the optimal duration was 10–20 years.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.X.; Feng, H.J.; Zhang, M.; Shao, Y.Q.; Wang, J.Q.; Liu, Y.L.; Li, C.L. Straw returning combined with controlled-release nitrogen fertilizer affected organic carbon storage and crop yield by changing humic acid composition and aggregate distribution. J. Clean. Prod. 2023, 415, 137783. [Google Scholar] [CrossRef]
- Paul, S.; Flessa, H.; Veldkamp, E.; López-Ulloa, M. Stabilization of recent soil carbon in the humid tropics following land use changes: Evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 2008, 87, 247–263. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, W.L.; Wei, Y.P.; Hu, K.L. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of Northern China. Soil Till. Res. 2015, 145, 78–86. [Google Scholar] [CrossRef]
- Wu, L.P.; Zhang, S.R.; Ma, R.H.; Chen, M.M.; Wei, W.L.; Ding, X.D. Carbon sequestration under different organic amendments in saline-alkaline soils. Catena 2021, 196, 104882. [Google Scholar] [CrossRef]
- Zuo, W.A.; Gu, B.X.; Zou, X.W.; Peng, K.; Shan, Y.L.; Yi, S.Q.; Shan, Y.H.; Gu, C.H.; Bai, Y.C. Soil organic carbon sequestration in croplands can make remarkable contributions to China’s carbon neutrality. J. Clean. Prod. 2023, 382, 135268. [Google Scholar] [CrossRef]
- Liu, X.; Herbert, S.J.; Hashemi, A.M.; Zhang, X.; Ding, G. Effects of agricultural management on soil organic matter and carbon transformation—A review. Plant Soil Environ. 2006, 52, 531–543. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.X.; Yang, B.P.; Nie, J.F.; Jia, Z.K.; Han, Q.F. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [PubMed]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The role of soil in the contribution of food and feed. Philos. T. R. Soc. B 2021, 376, 20200181. [Google Scholar] [CrossRef]
- Thou, Z.Y. Achieving food security in China: Past three decades and beyond. China Agr. Econ. Rev. 2010, 2, 251–275. [Google Scholar]
- Yang, C.Q.; Wang, X.J.; Li, J.N.; Zhang, G.W.; Shu, H.M.; Hu, W.; Han, H.Y.; Liu, R.X.; Guo, Z.C. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system. J. Integr. Agr. 2023, 23, 669–679. [Google Scholar] [CrossRef]
- Pu, C.; Kan, Z.R.; Liu, P.; Ma, S.T.; Qi, J.Y.; Zhao, X.; Zhang, H.L. Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. J. Integr. Agr. 2019, 18, 1337–1347. [Google Scholar] [CrossRef]
- Stella, T.; Mouratiadou, I.; Gaiser, T.; Berg-Mohnicke, M.; Wallor, E.; Ewert, F.; Nendel, C. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 2019, 14, 094008. [Google Scholar] [CrossRef]
- Wang, X.D.; He, C.; Liu, B.Y.; Zhao, X.; Liu, Y.; Wang, Q.; Zhang, H.L. Effects of residue returning on soil organic carbon storage and sequestration rate in China’s croplands: A meta-analysis. Agronomy 2020, 10, 691. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Yang, B.P.; Ding, R.X.; Nie, J.F.; Wang, J.P. Maize straw effects on soil aggregation and other properties in arid land. Soil Till. Res. 2015, 153, 131–136. [Google Scholar] [CrossRef]
- Zhu, X.F.; Xie, H.T.; Masters, M.D.; Rui, Y.C.; Luo, Y.; He, H.B.; Zhang, X.D.; Liang, C. Microorganisms, their residues, and soil carbon storage under a continuous maize cropping system with eight years of variable residue retention. Appl. Soil Ecol. 2023, 187, 104846. [Google Scholar] [CrossRef]
- Chen, J.H.; Gong, Y.Z.; Wang, S.Q.; Guan, B.Z.; Balkovic, J.; Kraxner, F. To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ. 2019, 662, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Chen, L.; Huang, H.Y.; Qu, P.; Wei, Z.G. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavail. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S.; Gill, S.C.; Khippal, A.; Tripathi, S.C.; Singh, G.P. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Till. Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Wu, Y.P.; He, J.L.; Liu, W.; Cheng, W.G.; Shaaban, M.; Jiang, Y.B. The effects of continuous straw returning strategies on SOC balance upon fresh straw incorporation. Environ. Res. 2023, 232, 116225. [Google Scholar] [CrossRef]
- Zhu, C.C.; Zhong, W.H.; Han, C.; Deng, H.; Jiang, Y.B. Driving factors of soil organic carbon sequestration under straw returning across China’s uplands. J. Environ. Manag. 2023, 335, 117590. [Google Scholar] [CrossRef]
- Chen, L.M.; Sun, S.L.; Yao, B.; Peng, Y.T.; Gao, C.F.; Qin, T.; Zhou, Y.Y.; Sun, C.R.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef]
- Liu, T.; He, G.J.; Lau, A.K.H. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci. Total Environ. 2020, 711, 134633. [Google Scholar] [CrossRef] [PubMed]
- Seglah, P.A.; Wang, Y.J.; Wang, H.Y.; Bi, Y.Y.; Zhou, K.; Wang, Y.; Wang, H.; Feng, X.X. Crop straw utilization and field burning in Northern region of Ghana. J. Clean. Prod. 2020, 261, 121191. [Google Scholar] [CrossRef]
- Yang, X.M.; Cheng, L.L.; Huang, X.L.; Zhang, Y.; Yin, C.B.; Lebailly, P. Incentive mechanism to promote corn stalk return sustainably in Henan, China. Sci. Total Environ. 2020, 738, 139775. [Google Scholar] [CrossRef] [PubMed]
- Jaćimović, G.; Aćin, V.; Mirosavljević, M.; Brbaklić, L.; Vujić, S.; Dunđerski, D.; Šeremešić, S. Effects of combined long-term straw return and nitrogen fertilization on wheat productivity and soil properties in the wheat-maize-soybean rotation system in the Pannonian Plain. Agronomy 2023, 13, 1529. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, W.J.; Li, B.G.; Wang, G.M.; Chen, S.C.; Zhu, D.H.; Liu, Z. Quantification of the effects of long-term straw return on soil organicMatter spatiotemporal variation: A case study in typical black soil region. Soil 2023, 9, 351–364. [Google Scholar] [CrossRef]
- He, H.; Peng, M.W.; Lu, W.D.; Ru, S.B.; Hou, Z.A.; Li, J.H. Organic fertilizer substitution promotes soil organic carbon sequestration by regulating permanganate oxidizable carbon fractions transformation in oasis wheat fields. Catena 2023, 221, 106784. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.C.; Li, J.; Xu, Y.; Wang, X.L. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar]
- Salehi, A.; Fallah, S.; Sourki, A.A. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella Sativa L. Int. Agrophys. 2017, 31, 103–116. [Google Scholar] [CrossRef]
- Sarma, B.; Farooq, M.; Gogoi, N.; Borkotoki, B.; Kataki, R.; Garg, A. Soil organic carbon dynamics in wheat—Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. J. Clean. Prod. 2018, 201, 471–480. [Google Scholar] [CrossRef]
- Su, G.C.; Ong, H.C.; Zulkifli, N.W.M.; Ibrahim, S.; Chen, W.H.; Chong, C.T.; Ok, Y.S. Valorization of animal manure via pyrolysis for bioenergy: A review. J. Clean. Prod. 2022, 343, 130965. [Google Scholar] [CrossRef]
- Hayatu, N.G.; Liu, Y.R.; Han, T.F.; Daba, N.A.; Zhang, L.; Shen, Z.; Li, J.W.; Muazu, H.; Lamlom, S.F.; Zhang, H.M. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice-rice cropping system. J. Integr. Agr. 2022, 22, 2848–2864. [Google Scholar] [CrossRef]
- Hossain, M.E.; Mei, X.R.; Zhang, W.Y.; Dong, W.Y.; Yan, Z.X.; Liu, X.; Rachit, S.; Gopalakrishnan, S.; Liu, E.K. Substitution of chemical fertilizer with organic fertilizer affects soil total nitrogen and its fractions in Northern China. Int. J. Environ. Res. Public Health 2021, 18, 12848. [Google Scholar] [CrossRef]
- Liao, B.; Cai, T.C.; Wu, X.; Luo, Y.; Liao, P.; Zhang, B.C.; Zhang, Y.T.; Wei, G.F.; Hu, R.G.; Luo, Y.F.; et al. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. J. Environ. Manag. 2023, 344, 118372. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Shen, S.Z.; Wan, C.; Wang, S.Q.; Yang, F.X.; Zhang, K.Q.; Gao, W.X. Organic fertilizer substitution over six years improves the productivity of garlic, bacterial diversity, and microbial communities network complexity. Appl. Soil Ecol. 2023, 182, 104718. [Google Scholar] [CrossRef]
- Zhai, L.C.; Wang, Z.B.; Zhai, Y.C.; Zhang, L.H.; Zheng, M.J.; Yao, H.P.; Lv, L.H.; Shen, H.P.; Zhang, J.T.; Yao, Y.R.; et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Till. Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Liu, D.T.; Song, C.C.; Xin, Z.H.; Fang, C.; Liu, Z.H.; Xu, Y.P. Agricultural management strategies for balancing yield increase, carbon sequestration, and emission reduction after straw return for three major grain crops in China: A meta-analysis. J. Environ. Manag. 2023, 340, 117965. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Wu, P.N.; Mei, F.J.; Ling, Y.; Qiao, Y.B.; Liu, C.S.; Leghari, S.J.; Guan, X.K.; Wang, T.C. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manag. 2021, 288, 112391. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.Q.; Hui, D.F.; Zhang, D.Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wang, X.J.; Xu, M.G.; Feng, G.; Zhang, W.J.; Lu, C.A. Crop yield and soil organic matter after long-term straw return to soil in China. Nutr. Cycl. Agroecosys. 2015, 102, 371–381. [Google Scholar] [CrossRef]
- Huang, T.T.; Yang, N.; Lu, C.; Qin, X.L.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Till. Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Pallmann, P. Applied meta-analysis with R. J. Appl. Stat. 2015, 42, 914–915. [Google Scholar] [CrossRef]
- Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Global Change Biol. 2009, 15, 396–424. [Google Scholar] [CrossRef]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Global Ecol. Biogeogr. 2020, 29, 1412–1429. [Google Scholar] [CrossRef]
- Rosenberg, M.S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [PubMed]
- Che, W.K.; Piao, J.L.; Gao, Q.; Li, X.B.; Li, X.; Jin, F. Response of soil physicochemical properties, soil nutrients, enzyme activity and rice yield to rice straw returning in highly saline-alkali paddy soils. J. Soil Sci. Plant Nut. 2023, 23, 4396–4411. [Google Scholar] [CrossRef]
- Yang, J.H.; Luo, Y.L.; Chen, J.; Jin, M.; Wang, Z.L.; Li, Y. Effects of main food yield under straw return in China: A meta-analysis. Sci. Agric. Sin. 2020, 53, 4415–4429. (In Chinese) [Google Scholar]
- Cong, P.; Li, Y.Y.; Wang, J.; Gao, Z.J.; Pang, H.C.; Zhang, L.; Liva, N.; Dong, J. Increasing straw incorporation rates improves subsoil fertility and crop yield in the Huang-Huai-Hai Plain of China. Arch. Agron. Soil Sci. 2020, 66, 1976–1990. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Li, C.F.; Li, J.J.; Ding, Z.S.; Xu, J.; Sun, X.F.; Zhou, P.L.; Zhao, M. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang–Huai–Hai Valley. Crop J. 2015, 3, 445–450. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, W.; Xie, X.L.; Yin, C.M.; Hou, H.J. Effects of rice straw mulching on N2O emissions and maize productivity in a rain-fed upland. Environ. Sci. Pollut. R. 2018, 25, 6407–6413. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.Y.; Shi, J.L.; Wei, G.H.; Tian, X.H. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Islam, M.U.; Guo, Z.C.; Jiang, F.H.; Peng, X.H. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crop Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zou, H. Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in Northeast China. Soil Till. Res. 2017, 170, 77–84. [Google Scholar] [CrossRef]
- Wang, X.J.; Jia, Z.K.; Liang, L.Y.; Zhao, Y.F.; Yang, B.P.; Ding, R.X.; Wang, J.P.; Nie, J.F. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- Lin, H.Y.; Zhou, M.H.; Zeng, F.R.; Xu, P.; Ma, S.L.; Zhang, B.W.; Li, Z.Y.; Wang, Y.Q.; Zhu, B. How do soil organic carbon pool, stock and their stability respond to crop residue incorporation in subtropical calcareous agricultural soils? Agr. Ecosyst. Environ. 2022, 332, 107927. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Li, Y.L.; Wang, K.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the stratification of the soil organic C, total N and C:N ratio in a semiarid region of China. Soil Till. Res. 2015, 153, 28–35. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.Q.; Yao, R.J.; Abdo, A.I.; Li, P.; Jiao, J.G.; Chen, X.Y. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef]
- Han, X.; Xu, C.; Dungait, J.A.J.; Bol, R.; Wang, X.J.; Wu, W.L.; Meng, F.Q. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: A system analysis. Biogeosciences 2018, 15, 1933–1946. [Google Scholar] [CrossRef]
- Jin, Z.Q.; Shah, T.R.; Zhang, L.; Liu, H.Y.; Peng, S.B.; Nie, L.X. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Yuan, G.Y.; Huan, W.W.; Song, H.; Lu, D.J.; Chen, X.Q.; Wang, H.Y.; Zhou, J.M. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil Till. Res. 2021, 209, 104958. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yuan, G.Y.; Wang, H.Y.; Lu, D.J.; Chen, X.Q.; Zhou, J.M. Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy 2019, 9, 133. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.G.; Ahmed, S.; Hu, J.; Chen, X.D.; Li, X.H.; Zhu, W.Y.; Opoku-Kwanowaa, Y. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China. Sustainability 2020, 12, 2631. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Dou, S.; Guan, S.; Yang, C.; Wang, Z. Deep straw burial accelerates straw decomposition and improves soil water repellency. Agronomy. 2023, 13, 1927. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Wang, H.Y.; Pang, H.C. Pelletized straw incorporation in sandy soil increases soil aggregate stability, soil carbon, and nitrogen stocks. Sustainability 2023, 15, 7079. [Google Scholar] [CrossRef]
- Wang, X.Q.; Lv, G.Y.; Zhang, Y.; Yu, Y.; Wang, X.B.; Peixoto, L.; Qian, C.R.; Pang, H.C. Annual burying of straw after pelletizing: A novel and feasible way to improve soil fertility and productivity in Northeast China. Soil Till. Res. 2023, 230, 105699. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Pang, H.C.; Zhang, J.T. Returning granulated straw for accelerating decomposition rate and improving soil fertility. Trans. Chin. Soc. Agric. Eng. 2017, 33, 177–183. (In Chinese) [Google Scholar]
- Zhang, L.; Wang, J.; Pang, H.C.; Zhang, J.T.; Guo, J.J.; Dong, G.H.; Cong, P. Effects of pelletized straw on soil nutrient properties in relation to crop yield. Soil Use Manag. 2018, 34, 479–489. [Google Scholar] [CrossRef]
- Cong, P.; Pang, H.C.; Wang, J.; Liu, N.; Li, Y.Y.; Zhang, L. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil. Acta Pedol. Sin. 2020, 57, 811–823. (In Chinese) [Google Scholar]
- Xu, X.; Pang, D.W.; Chen, J.; Luo, Y.L.; Zheng, M.J.; Yin, Y.P.; Li, Y.X.; Li, Y.; Wang, Z.L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crop Res. 2018, 221, 71–80. [Google Scholar] [CrossRef]
- Zhou, G.X.; Zhang, J.B.; Zhang, C.Z.; Feng, Y.Z.; Chen, L.; Yu, Z.H.; Xin, X.L.; Zhao, B.Z. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures. Sci. Rep. 2016, 6, 22186. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.F.; Meng, J.; Wang, Q.X.; Zhang, W.M.; Cheng, X.Y.; Chen, W.F. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. J. Integr. Agr. 2017, 16, 1064–1074. [Google Scholar] [CrossRef]
- Zhang, R.X.; Qu, Z.Y.; Liu, L.; Yang, W.; Wang, L.P.; Li, J.J.; Zhang, D.L. Soil respiration and organic carbon response to biochar and their influencing factors. Atmosphere 2022, 13, 2038. [Google Scholar] [CrossRef]
- Huang, C.X.; Cheng, C.P.; Wang, Z.Y.; Zhao, X.; Yang, Y.; Hu, L.L.; Li, Y.Z.; Ma, J.H.; Wang, L.L.; Chang, L.; et al. Straw strip mulching increased soil organic carbon components of a wheat field in dry farming regions of the Loess Plateau. Water 2022, 14, 2645. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Zeng, X.Z.; Chen, K.; Li, Z.; Guo, S.; Shangguan, Y.X.; Yu, H.; Tu, S.H.; Qin, Y.S. Long-term straw mulch effects on crop yields and soil organic carbon fractions at different depths under a no-till system on the Chengdu Plain, China. J. Soil Sediment. 2019, 19, 2143–2152. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.R.; Li, Y.Y.; Yang, J.F.; Li, N.; An, N. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in Northeast China. Sci. Rep. 2019, 9, 16531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Pang, H.C.; Zhang, J.T.; Guo, J.J.; Dong, G.H. Effects of short-term granulated straw incorporation on grain yield and soil respiration in a winter wheat-summer maize cropping system. Chin. J. Appl. Ecol 2018, 29, 565–572. (In Chinese) [Google Scholar]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, L.; Steinberger, Y.; Liu, Z.X.; Liao, S.H.; Xie, G.H. Field crop residue estimate and availability for biofuel production in China. Renew. Sust. Energ. Rev. 2013, 27, 864–875. [Google Scholar] [CrossRef]
- Dong, L.L.; Wang, H.H.; Shen, Y.; Wang, L.Q.; Zhang, H.D.; Shi, L.L.; Lu, C.Y.; Shen, M.X. Straw type and returning amount affects SOC fractions and Fe/Al oxides in a rice-wheat rotation system. Appl. Soil Ecol. 2023, 183, 104736. [Google Scholar] [CrossRef]
- Zhang, S.L.; Li, M.; Cui, X.Y.; Pan, Y.M. Effect of different straw retention techniques on soil microbial community structure in wheat-maize rotation system. Front. Microbiol. 2023, 13, 1069458. [Google Scholar] [CrossRef]
- Shao, J.M.; Gao, C.Y.; Seglah, P.A.; Xie, J.; Zhao, L.; Bi, Y.Y.; Wang, Y.J. Analysis of the available straw nutrient resources and substitution of chemical fertilizers with straw returned directly to the field in China. Agriculture 2023, 13, 1187. [Google Scholar] [CrossRef]
- Wang, X.Y.; Sun, B.; Mao, J.D.; Sui, Y.Y.; Cao, X.Y. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions. Environ. Sci. Technol. 2012, 46, 7159–7165. [Google Scholar] [CrossRef] [PubMed]
- Mi, W.H.; Sun, Y.; Xia, S.Q.; Zhao, H.T.; Mi, W.T.; Brookes, P.C.; Liu, Y.L.; Wu, L.H. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma 2018, 320, 23–29. [Google Scholar] [CrossRef]
- Wang, J.D.; Wang, K.H.; Wang, X.J.; Ai, Y.C.; Zhang, Y.C.; Yu, J.G. Carbon sequestration and yields with long-term use of inorganic fertilizers and organic manure in a six-crop rotation system. Nutr. Cycl. Agroecosys. 2018, 111, 87–98. [Google Scholar] [CrossRef]
- Xu, Y.G.; Peng, Z.P.; Tu, Y.T.; Huang, J.C. Combining organic and inorganic fertilization increases rice yield and soil nitrogen and carbon: Dissolved organic matter chemodiversity and soil microbial communities. Plant Soil 2023, 492, 557–571. [Google Scholar] [CrossRef]
- Hou, Q.; Ni, Y.M.; Huang, S.; Zuo, T.; Wang, J.; Ni, W.Z. Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: A meta-analysis. Pedosphere 2023, 33, 172–184. [Google Scholar] [CrossRef]
- Du, Y.D.; Cui, B.J.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W.Q. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Li, D.C.; Liu, S.J.; Lu, Z.; Cai, A.D.; Liu, L.S.; Xu, Y.M.; Gao, J.S.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Hu, C.; Li, S.L.; Qiao, Y.; Liu, D.H.; Chen, Y.F. Effects of 30 years repeated fertilizer applications on soil properties, microbes and crop yields in rice-wheat cropping systems. Exp. Agr. 2015, 51, 355–369. [Google Scholar] [CrossRef]
- Lu, X.L. Fertilizer types affect soil organic carbon content and crop production: A meta-analysis. Agr. Res. 2020, 9, 94–101. [Google Scholar] [CrossRef]
- Cao, M.H.; Duan, Y.; Li, M.H.; Tang, C.G.; Kan, W.J.; Li, J.Y.; Zhang, H.L.; Zhong, W.L.; Wu, L.F. Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil. J. Integr. Agr. 2023, 23, 698–710. [Google Scholar] [CrossRef]
- Cai, A.D.; Xu, M.G.; Wang, B.R.; Zhang, W.J.; Liang, G.P.; Hou, E.Q.; Luo, Y.Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Till. Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Qaswar, M.; Liu, Y.R.; Huang, J.; Liu, K.L.; Mudasir, M.; Lv, Z.Z.; Hou, H.Q.; Lan, X.J.; Ji, J.H.; Ahmed, W.; et al. Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil. J. Soil Sediment 2020, 20, 2093–2106. [Google Scholar] [CrossRef]
- Wei, Z.B.; Ying, H.; Guo, X.W.; Zhuang, M.H.; Cui, Z.L.; Zhang, F.S. Substitution of mineral fertilizer with organic fertilizer in maize systems: A meta-analysis of reduced nitrogen and carbon emissions. Agronomy 2020, 10, 1149. [Google Scholar] [CrossRef]
- Ding, X.L.; Yuan, Y.R.; Liang, Y.; Li, L.J.; Han, X.Z. Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. J. Soil Sediment 2014, 14, 854–859. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Shao, L.W.; Sun, H.Y.; Niu, J.F.; Liu, X.W. Effects of straw and manure management on soil and crop performance in North China Plain. Catena 2020, 187, 104359. [Google Scholar] [CrossRef]
- Dămătîrcă, C.; Moretti, B.; Bertora, C.; Ferrarini, A.; Lerda, C.; Mania, I.; Celi, L.; Gorra, R.; Zavattaro, L. Residue incorporation and organic fertilisation improve carbon and nitrogen turnover and stabilisation in maize monocropping. Agr. Ecosyst. Environ. 2023, 342, 108255. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Z.X.; Opoku-Kwanowaa, Y.; Hu, J.; Wu, J.G. Effects of returning organic waste on soil enzymes and microbial quantity in dryland farming. Int. Agrophys. 2021, 35, 279–287. [Google Scholar] [CrossRef]
- Koga, N.; Tsuji, H. Effects of reduced tillage, crop residue management and manure application practices on crop yields and soil carbon sequestration on an Andisol in Northern Japan. Soil Sci. Plant Nutr. 2009, 55, 546–557. [Google Scholar] [CrossRef]
- Pei, H.; Miao, Y.; Hou, R.X. Meta analysis of the effects of global organic material returning on soil organic carbon sequestration in Mollisols. Trans. Chin. Soc. Agric. Eng. 2023, 39, 79–88. (In Chinese) [Google Scholar]
- Xia, L.L.; Lam, S.K.; Yan, X.Y.; Chen, D.L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.W.; Li, L.; Friman, V.P.; Guo, J.J.; Guo, S.W.; Shen, Q.R.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Xiao, G.M.; Liu, L.; Zhao, Y.; Ru, S.H.; Zhao, O.Y.; Hou, L.M.; Sun, S.Y.; Wang, L.; Wang, C. Effects of organic materials input on soil organic carbon in China based on meta-analysis. Soil Fertil. Sci. China. 2023, 8, 23–32. (In Chinese) [Google Scholar]
- Liu, J.; Chen, R.L.; Chen, G.Y.; Zhao, D.C.; Zhang, X.J.; Li, F.Z.; Li, T.F. Effects of combined application of nitrogen and organic fertilizer and straw returning on wheat growth and yield. J. Henan Agric. Sci. 2015, 48, 48–51+64. (In Chinese) [Google Scholar]
- Sun, X.Y. Soil Science, 1st ed.; China Forestry Publishing House: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Wu, H.B.; Guo, Z.T.; Peng, C.H. Distribution and storage of soil organic carbon in China. In Global Biogeochemical Cycles; Wiley Online Library: Hoboken, NJ, USA, 2003; Volume 17. [Google Scholar]
- Liu, X.J.; Vitousek, P.; Chang, Y.H.; Zhang, W.F.; Matson, P.; Zhang, F.S. Evidence for a historic change occurring in China. Environ. Sci. Technol. 2016, 50, 505–506. [Google Scholar] [CrossRef]
- He, Z.Q.; Pagliari, P.H.; Waldrip, H.M. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
Crop | Sown Area (Hectare) In 2022 | Expectedly Boosted SOC (MT) | Expectedly Boosted Yield (Kg) |
---|---|---|---|
Maize | 43,070 × 103 | Straw: 389 Manure: 1234 Straw plus manure: 537 | Straw: 36,781,780 × 103 Manure: 23,434,387 × 104 Straw plus manure: 85,020,180 × 103 |
Wheat | 23,520 × 103 | Straw: 213 Manure: 674 Straw plus manure: 293 | Straw: 13,970,880 × 103 Manure: 10,732,176 × 104 Straw plus manure: 51,132,480 × 103 |
Rice | 29,450 × 103 | Straw: 266 Manure: 843 Straw plus manure: 367 | Straw: 51,066,300 × 103 Manure: 97,862,350 × 103 Straw plus manure: 85,051,600 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Yang, Y.; Xie, H.; Zhang, Y.; He, H.; Zhang, X.; Sun, S. Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility. Agriculture 2024, 14, 480. https://doi.org/10.3390/agriculture14030480
Zhao Z, Yang Y, Xie H, Zhang Y, He H, Zhang X, Sun S. Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility. Agriculture. 2024; 14(3):480. https://doi.org/10.3390/agriculture14030480
Chicago/Turabian StyleZhao, Zhe, Yali Yang, Hongtu Xie, Yixin Zhang, Hongbo He, Xudong Zhang, and Shijun Sun. 2024. "Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility" Agriculture 14, no. 3: 480. https://doi.org/10.3390/agriculture14030480
APA StyleZhao, Z., Yang, Y., Xie, H., Zhang, Y., He, H., Zhang, X., & Sun, S. (2024). Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility. Agriculture, 14(3), 480. https://doi.org/10.3390/agriculture14030480