Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orchard Site and Irrigation Treatments
2.2. Soil Water Content and Salinity Assessment
2.3. Environmental Impact
2.4. Fruit Yield
2.5. Statistical Analysis
3. Results
3.1. Climatic Data and Applied Water
3.2. Soil Water Content
3.3. Soil Salinity Distribution
3.4. Peach Yield
3.5. Environmental Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Roma, Italy, 2012; p. 209. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture, a Report Produced for the G20; FAO: Roma, Italy, 2017; p. 33. [Google Scholar]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- UN Environment. Global Environment Outlook–GEO-6: Healthy Planet, Healthy People; UN Environment: Nairobi, Kenya, 2019. [Google Scholar]
- IPCC. Climate Change 2013. In The Physical Science Basis Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Nikolskii-Gavrilov, I.; Landeros-Sanchez, C.; Palacios-Velez, O.L.; Hernández-Pérez, J. Impact of climate change on salinity and drainage of irrigated lands in Mexico. J. Agric. Sci. 2015, 7, 197–204. [Google Scholar] [CrossRef]
- Bless, A.E.; Colin, F.; Crabi, A.; Devaux, N.; Philippon, O.; Follain, S. Landscape Evolution and Agricultural Land Salinization in Coastal Area: A Conceptual Model. Sci. Total Environ. 2018, 625, 647–656. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Louati, D.; Majdoub, R.; Abida, H. 30 years’ saline water irrigation effects on soil characteristics. Int. J. Eng. Technol. Res. 2014, 2, 5–13. [Google Scholar]
- Gucci, R.; Tattini, M. Salinity tolerance in olive. Hortic. Rev. 1997, 21, 177–214. [Google Scholar] [CrossRef]
- Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agricultural Drainage Agronomy Monograph No. 38; Skaggs, R.W., van Schilfgaarde, J., Eds.; ASA: Madison, WI, USA, 1999; pp. 55–108. [Google Scholar]
- Falkenmark, M.; Rockström, J. Balancing Water for Man and Nature: The New Approach to Ecohydrology; EarthScan: Oxford, UK, 2004. [Google Scholar]
- Chalmers, D.J.; Mitchell, P.D.; Van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar] [CrossRef]
- Toumi, I.; Ghrab, M.; Nagaz, K. Vegetative growth, yield, and water productivity of an early maturing peach cultivar under deficit irrigation strategies in a warm and arid area. Irrig. Drain. 2022, 71, 938–947. [Google Scholar] [CrossRef]
- El Mokh, F.; Nagaz, K.; Masmoudi, M.M.; Ben Mechlia, N.; Ghiglieri, G. Deficit Irrigation Using Saline Water of Fruit Trees under Water Scarcity Conditions of Southern Tunisia. Atmos 2021, 12, 864. [Google Scholar] [CrossRef]
- Ghrab, M.; Zitouna, R.; Ben Mimoun, M.; Masmoudi, M.; Ben Mechlia, N. Yield and water productivity of peach trees under continuous deficit irrigation and high evaporative demand. Biol. Agric. Hortic. 2013, 29, 29–37. [Google Scholar] [CrossRef]
- Toumi, I.; Zarrouk, O.; Ghrab, M.; Nagaz, K. Improving peach fruit quality traits using deficit irrigation strategies in southern Tunisia arid area. Plants 2022, 11, 1656. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Vercambre, G.; Davarynejad, G.; Bannayan, M.; Azizi, M.; Génard, M. Water scarcity conditions affect peach fruit size and polyphenol contents more severely than other fruit quality traits. J. Sci. Food Agric. 2015, 95, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Kang, S.; Li, F.; Du, T. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. Agr. Water Manag. 2017, 179, 184–192. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Response of plum trees to deficit irrigation under two crop levels: Tree growth, yield and fruit quality. Irrig. Sci. 2010, 28, 525–534. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Martínez-Cob, A.; Faci, J. Deficit irrigation strategies, soil salinization and soil sodification in a semiarid drip-irrigated peach orchard. Agr. Water Manag. 2014, 142, 1–9. [Google Scholar] [CrossRef]
- Dasberg, S.; Or, D. Drip Irrigation; Springer: Berlin/Heidelberg, Germany, 1999; p. 162. [Google Scholar]
- Bouaziz, A. Behaviour of some olive varieties irrigated with brackish water and grown intensively in the central part of Tunisia. Acta Hortic. 1990, 286, 247–250. [Google Scholar] [CrossRef]
- FAO. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29; FAO: Roma, Italy, 1985. [Google Scholar]
- Melgar, J.C.; Mohamed, Y.; Serrano, N.; García-Galavís, P.A.; Navarro, C.; Parra, M.A.; Benlloch, M.; Fernández-Escobar, R. Long term responses of olive trees to salinity. Agri Water Manag. 2009, 96, 1105–1113. [Google Scholar] [CrossRef]
- Ghrab, M.; Ayadi, M.; Gargouri, K.; Chartzoulakis, K.; Gharsallaoui, M.; Bentaher, H.; Psarras, G.; Ben Mimoun, M.; Masmoudi, M.; Ben Mechlia, N. Long-term effects of partial root-zone drying (PRD) on yield, oil composition and quality of olive tree (cv. Chemlali) irrigated with saline water in arid land. J. Food Comp. Anal. 2014, 36, 90–97. [Google Scholar] [CrossRef]
- Hsiao, T.; Steduto, P.; Fereres, E. A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig. Sci. 2007, 25, 209–231. [Google Scholar] [CrossRef]
- Kaman, H.; Kirda, C.; Cetin, M.; Topcu, S. Salt accumulation in the root zones of tomato and cotton irrigated with partial root-drying technique. Irrig. Drain. 2006, 55, 533–544. [Google Scholar] [CrossRef]
- Ghrab, M.; Gargouri, K.; Bentaher, H.; Chartzoulakis, K.; Ayadi, M.; Mehdi Ben Mimoun, M.; Masmoudi, M.M.; Ben Mechlia, N.; Psarras, G. Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate. Agri. Water Manag. 2013, 123, 1–11. [Google Scholar] [CrossRef]
- Ben Mechlia, N.; Masmoudi, M.M. Deficit irrigation of orchards. Ch. Options Méditerr. 2003, 44, 203–216. [Google Scholar]
- Nasr, Z.; Ben Mechlia, N. Deficit irrigation to reduce salinization in an apple orchard. Acta Hortic. 2002, 573, 283–287. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.S.; Ruiying, Z.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Minhas, P.S.; Qadir, M.; Yadav, R.K. Groundwater irrigation induced soil sodification and response options. Agri. Water Manag. 2019, 215, 74–85. [Google Scholar] [CrossRef]
- Saqib, M.; Akhtar, J.; Abbas, G.; Murtaza, G. Enhancing food security and climate change resilience in degraded land areas by resilient crops and agroforestry. In Climate Change-Resilient Agriculture and Agroforestry; Springer: Cham, Switzerland, 2019; pp. 283–297. [Google Scholar]
- Macedonio, F.; Drioli, E.; Gusev, A.A.; Bardow, A.; Semiat, R.; Kurihara, M. Efficient technologies for worldwide clean water supply. Chem. Eng. Process. Process Intensif. 2012, 51, 2–17. [Google Scholar] [CrossRef]
- Stockle, C.O. Environmental impact of irrigation: A review. In Proceedings of the IV International Congress of Agricultural Engineering, Chillan, Chile, 9–11 May 2001; p. 15. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristics estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, J.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Chang, C.; Sommerfeldt, T.G.; Carefoot, J.M.; Schaalje, G.B. Relationships of electrical conductivity with total dissolved salts and cation concentration of sulfate-dominant soil extracts. Can. J. Soil Sci. 1983, 63, 19–86. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical Conductivity and Total Dissolved Solids. Methods Soil Anal. 2017, 84, 1442–1461. [Google Scholar] [CrossRef]
- Ghrab, M.; Masmoudi, M.M.; Ben Mimoun, M.; Ben Mechlia, N. Plant- and climate-based indicators for irrigation scheduling in mid-season peach cultivar under contrasting watering conditions. Sci. Hortic. 2013, 158, 59–67. [Google Scholar] [CrossRef]
- Ghrab, M.; Masmoudi, M.; Ben Mimoun, M.; Ben Mechlia, N. Irrigation scheduling under water shortage: Investigation of scion-rootstock of peach and water deficit combinations. Water Sci. Technol. Water Supply 2014, 14, 312–317. [Google Scholar] [CrossRef]
- Davies, W.J.; Bacon, M.A.; Thompson, D.S.; Sobeih, W.; González Rodríguez, L. Regulation of leaf and fruit growth in plants in drying soil: Exploitation of the plant’s chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. J. Exp. Bot. 2000, 51, 1617–1626. [Google Scholar] [CrossRef]
- de Souza, C.R.; Maroco, J.P.; Dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Partial rootzone-drying: Regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct. Plant Biol. 2003, 30, 653–662. [Google Scholar] [CrossRef]
- Dos Santos, T.; Lopes, C.M.; Rodrigues, M.; Souza, C.; Maroco, J.; Pereira, J.; Ricardo-da-Silva, J.; Chaves, M. Partial root-zone drying: Effects on growth, and fruit quality of field-grown grapevines (Vitis vinifera L.). Funct. Plant Biol. 2003, 30, 663–671. [Google Scholar] [CrossRef]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef]
- Shalhevet, J. Using water of marginal quality for crop production: Major issues. Agri. Water Manag. 1994, 25, 233–269. [Google Scholar] [CrossRef]
- Wiesman, Z.; Itzhak, D.; Ben Dom, N. Optimization of saline water level for sustainable Barnea olive and oil production in desert conditions. Sci. Hortic. 2004, 100, 257–266. [Google Scholar] [CrossRef]
- Metochis, C. Irrigation of ‘Koroneiki’ olives with saline water. Olivae 1999, 76, 22–24. [Google Scholar]
- Aragues, R.; Puy, J.; Royo, A.; Espada, J.L. Three-year field response of young olive trees (Olea europaea L., cv. Arbequina) to soil salinity: Trunk growth and leaf ion accumulation. Plant Soil 2005, 271, 265–273. [Google Scholar] [CrossRef]
- Ghrab, M.; Gargouri, K.; Bentaher, H. Influence de l’irrigation goutte à goutte par des eaux chargées sur un sol léger. Cah. Options Méditerr. 2003, 57, 63–67. [Google Scholar]
- Isidoro, D.; Grattan, S.R. Predicting soil salinity in response to different irrigation practices, soil types and rainfall scenarios. Irrig. Sci. 2011, 29, 197–211. [Google Scholar] [CrossRef]
- Leib, B.G.; Caspari, H.W.; Redulla, C.A.; Ammar, H. Partial root zone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irrig. Sci. 2006, 24, 85–99. [Google Scholar] [CrossRef]
- Mossad, A.; Farina, V.; Lo Bianco, R. Fruit Yield and Quality of ‘Valencia’ Orange Trees under Long-Term Partial Rootzone Drying. Agronomy 2020, 10, 164. [Google Scholar] [CrossRef]
Texture (%) | Bulk Density (g cm−3) | pH | OM (%) | ACC (%) | N (%) | P (mg kg−1) | K (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Clay | Silt | |||||||
62.5 | 7 | 30.5 | 1.59 | 8.2 | 0.8 | 6.1 | 0.025 | 13.90 | 152.29 |
EC dS m−1 | pH | Mineral Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Na mg L−1 | K mg L−1 | Mg mg L−1 | Ca mg L−1 | N mg L−1 | HCO3 (meq L−1) | Cl (meq L−1) | Fe mg L−1 | Zn mg L−1 | ||
3.17 | 7.7 | 361.0 | 37.0 | 15.4 | 189.4 | 1 | 1.2 | 18 | 0.2 | 0.02 |
Year | Treatment | AI (mm) | Total Salt (Ton ha−1) | ||||
---|---|---|---|---|---|---|---|
BB-FB | FB-FS | FS-H | Post-H | Total | |||
2013 | FI (100% ETc) | 71 | 96 | 190 | 500 | 857 | 17.3 |
DI (50% ETc) | 33 | 49 | 92 | 262 | 435 | 8.8 | |
PRD50 (50% ETc) | 40 | 50 | 95 | 260 | 445 | 9.0 | |
2014 | FI (100% ETc) | 79 | 92 | 178 | 512 | 861 | 17.4 |
DI (50% ETc) | 36 | 48 | 89 | 256 | 429 | 8.7 | |
PRD50 (50% ETc) | 40 | 50 | 90 | 236 | 416 | 8.4 | |
2015 | FI(100% ETc) | 91 | 100 | 175 | 514 | 880 | 17.8 |
DI (50% ETc) | 39 | 56 | 90 | 251 | 436 | 8.8 | |
PRD50 (50% ETc) | 35 | 68 | 95 | 233 | 432 | 8.7 | |
2016 | FI (100% ETc) | 85 | 103 | 197 | 598 | 982 | 19.9 |
DI (50% ETc) | 42 | 51 | 98 | 300 | 491 | 9.9 | |
PRD50 (50% ETc) | 42 | 51 | 98 | 300 | 491 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumi, I.; Ghrab, M.; Zarrouk, O.; Nagaz, K. Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia. Agriculture 2024, 14, 377. https://doi.org/10.3390/agriculture14030377
Toumi I, Ghrab M, Zarrouk O, Nagaz K. Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia. Agriculture. 2024; 14(3):377. https://doi.org/10.3390/agriculture14030377
Chicago/Turabian StyleToumi, Ines, Mohamed Ghrab, Olfa Zarrouk, and Kamel Nagaz. 2024. "Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia" Agriculture 14, no. 3: 377. https://doi.org/10.3390/agriculture14030377
APA StyleToumi, I., Ghrab, M., Zarrouk, O., & Nagaz, K. (2024). Impact of Deficit Irrigation Strategies Using Saline Water on Soil and Peach Tree Yield in an Arid Region of Tunisia. Agriculture, 14(3), 377. https://doi.org/10.3390/agriculture14030377