Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Study Framework of AGB Estimation
2.3. Data Acquisition
2.3.1. UAV Platform and Image Acquisition
2.3.2. UAV Image Processing
2.3.3. UAV Winter Wheat Plant Height Extraction
2.3.4. Measurement of AGB and Height of Winter Wheat
2.4. Methodology
2.4.1. AGB Estimation with Backpropagation Neural Network Method
2.4.2. Model Metric Evaluation
3. Results
3.1. Statistical Analysis of Plant Height (H) and Aboveground Biomass (AGB) of Winter Wheat
3.2. Relationship between Hdsm and H under Different Water–N Treatments
3.3. Relationship between Hdsm and AGB under Different Water–N Treatments
3.4. AGB Estimation Model Construction and Improvement
4. Discussion
4.1. Transferability Estimation Ability of the Improved AGB Estimation Model under Different Water Treatments
4.2. Transferability Estimation Ability of the Improved AGB Estimation Model across Different Years
4.3. Transferability Estimation Ability of the Improved AGB Estimation Model across Different N Levels
4.4. Factors Affecting the Transferability of Models
4.5. Factors Affecting the Accuracy of Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Parameter Value |
---|---|
Training time | 0.044 s |
Data slicing | 0.5 |
Data shuffling | No |
Cross-validation | 30% of dataset |
Activation function | identity |
Solver | lbfgs |
Learning rate | 0.1 |
L2 regular term | 1 |
Number of iterations | 1000 |
Number of neurons in 1st hidden layer | 100 |
References
- Wang, D.; Li, R.; Zhu, B.; Liu, T.; Sun, C.; Guo, W. Estimation of wheat plant height and biomass by combining UAV imagery and elevation data. Agriculture 2023, 13, 9. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, X.; Li, W.; Ou, J.; Cai, Y.; Chen, G.; Li, M.; Li, G.; Zhang, H.; Xu, X. Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. J. Environ. Manag. 2022, 312, 114943. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.A.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Ma, T.; Cao, M.; Wei, B.; Li, C.; Li, C.; Zhang, K.; Fang, Y.; Sun, X. Biomass estimation and characterization of the nutrient components of thinned unripe grapes in China and the global grape industries. Food Chem. X 2022, 15, 100363. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, M.; Zhang, X.; Zeng, H.; Wu, B. Mapping winter wheat biomass and yield using time series data blended from PROBA-V 100- and 300-m S1 products. Remote Sens. 2016, 8, 824. [Google Scholar] [CrossRef]
- Alabi, T.R.; Abebe, A.T.; Chigeza, G.; Fowobaje, K.R. Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sens. Appl. 2022, 27, 100782. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Hu, Z.; Xiao, W. Unmanned aerial system-based wheat biomass estimation using multispectral, structural and meteorological data. Agriculture 2023, 13, 1621. [Google Scholar] [CrossRef]
- Delécolle, R.; Maas, S.J.; Guérif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogr. 1992, 47, 145–161. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Jin, J. Fully automated proximal hyperspectral imaging system for high-resolution and high-quality in vivo soybean phenotyping. Precis. Agric. 2023, 24, 2395–2415. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.; Peng, J.; Huang, Y.; Li, J.; Zhang, J.; Yang, B.; Liao, X. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales. Remote Sens. 2019, 11, 2678. [Google Scholar] [CrossRef]
- Imran, A.B.; Khan, K.; Ali, N.; Ahmad, N.; Ali, A.M.; Shah, K. Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass. Glob. J. Environ. Sci. Manag. 2020, 6, 97–108. [Google Scholar]
- Adar, S.; Sternberg, M.; Paz-Kagan, T.; Henkin, Z.; Dovrat, G.; Zaady, E.; Argaman, E. Estimation of aboveground biomass production using an unmanned aerial vehicle (UAV) and VENμS satellite imagery in Mediterranean and semiarid rangelands. Remote Sens. Appl. 2022, 26, 100753. [Google Scholar] [CrossRef]
- Falcioni, R.; Santos, G.L.A.A.d.; Crusiol, L.G.T.; Antunes, W.C.; Chicati, M.L.; Oliveira, R.B.d.; Demattê, J.A.M.; Nanni, M.R. Non−invasive assessment, classification, and prediction of biophysical parameters using reflectance hyperspectroscopy. Plants 2023, 12, 2526. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV⁃based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, T.; Batelaan, O.; Duan, L.; Wang, Y.; Li, X.; Li, M. Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland. Ecol. Indic. 2023, 146, 109892. [Google Scholar] [CrossRef]
- Thomson, A.; Jacobs, J.; Morse-McNabb, E. Comparing the predictive ability of Sentinel-2 multispectral imagery and a proximal hyperspectral sensor for the estimation of pasture nutritive characteristics in an intensive rotational grazing system. Comput. Electron. Agric. 2023, 214, 108275. [Google Scholar] [CrossRef]
- Zou, M.; Liu, Y.; Fu, M.; Li, C.; Zhou, Z.; Meng, H.; Xing, E.; Ren, Y. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Front. Plant Sci. 2024, 14, 1272049. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Song, X.; Li, Z.; Xu, X.; Feng, H.; Zhao, C. Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis. Remote Sens. 2021, 13, 581. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Huang, J.; Jing, Y.; Xu, S.; Wang, L.; Li, S.; Zheng, G. Effects of the spatial resolution of UAV images on the prediction and transferability of nitrogen content model for winter wheat. Drones 2022, 6, 299. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Chen, Y.; Du, K.; Zheng, F.; Zhang, L.; Sun, Z. Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network. Eur. J. Agron. 2019, 103, 117–129. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.H.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Jiang, X.; He, Y.; Li, J.; Jiao, W.; Zhang, S.; Xu, F.; Han, Z.; Sun, J.; Yang, J.; et al. Multi-dimensional variables and feature parameter selection for aboveground biomass estimation of potato based on UAV multispectral imagery. Front. Plant Sci. 2022, 13, 948249. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Biradar, C.; Behera, M.; Prakash, A.; Das, P.; Mohanta, M.; Krishna, G.; Dogra, A.; Dhyani, S.; Rizvi, J. Optimising carbon fixation through agroforestry: Estimation of aboveground biomass using multi-sensor data synergy and machine learning. Ecol. Inform. 2024, 79, 102408. [Google Scholar] [CrossRef]
- Xie, T.; Li, J.; Yang, C.; Jiang, Z.; Chen, Y.; Guo, L.; Zhang, J. Crop height estimation based on UAV images: Methods, errors, and strategies. Comput. Electron. Agric. 2021, 185, 106155. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, M.; He, Y. Field estimation of maize plant height at jointing stage using an RGB-D camera. Crop J. 2022, 10, 1274–1283. [Google Scholar] [CrossRef]
- Yang, K.; Mo, J.; Luo, S.; Peng, Y.; Fang, S.; Wu, X.; Zhu, R.; Li, Y.; Yuan, N.; Zhou, C.; et al. Estimation of rice aboveground biomass by UAV imagery with photosynthetic accumulation models. Plant Phenomics 2023, 5, 0056. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Maeda, M.; Landivar, J. Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef]
- Luo, S.; Liu, W.; Zhang, Y.; Wang, C.; Xi, X.; Nie, S.; Ma, D.; Lin, Y.; Zhou, G. Maize and soybean heights estimation from unmanned aerial vehicle (UAV) LiDAR data. Comput Electron Agric. 2021, 182, 106005. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- Niu, Y.X.; Zhang, L.Y.; Zhang, H.H.; Han, W.T.; Peng, X.S. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef]
- Shu, M.Y.; Li, Q.; Ghafoor, A.; Zhu, J.; Li, B.; Ma, Y. Using the plant height and canopy coverage to estimation maize aboveground biomass with UAV digital images. Eur. J. Agron. 2023, 151, 126957. [Google Scholar] [CrossRef]
- Bareth, G.; Bendig, J.; Tilly, N.; Hoffmeister, D.; Aasen, H.; Bolten, A. A comparison of UAV- and TLS-derived plant height for crop monitoring: Using polygon grids for the analysis of crop surface models (CSMs). Photogramm. Fernerkun. 2016, 2016, 85–94. [Google Scholar] [CrossRef]
- Du, B.; Lund, P.D.; Wang, J.; Kolhe, M.L.; Hu, E. Comparative study of modelling the thermal efficiency of a novel straight through evacuated tube collector with MLR, SVR, BP and RBF methods. Sustain. Energy Technol. 2021, 44, 101029. [Google Scholar] [CrossRef]
- Lan, W.Q.; Yang, X.; Gong, T.S.; Xie, J. Predicting the shelf life of Trachinotus ovatus during frozen storage using a back propagation (BP) neural network model. Aquac. Fish. 2023, 8, 544–550. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Feng, D.; Zhang, W.; Chang, J.; Li, L.; Yang, L. Prediction of field winter wheat yield using fewer parameters at middle growth stage by linear regression and the BP neural network method. Eur. J. Agron. 2022, 141, 126621. [Google Scholar] [CrossRef]
- Li, H. Machine Learning Method; Tsinghua University Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Chang, C.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Mireei, S.A.; Mohtasebi, S.S.; Massudi, R.; Rafiee, S.; Arabanian, A.S.; Berardinelli, A. Non-destructive measurement of moisture and soluble solids content of mazafati date fruit by NIR spectroscopy. Aust. J. Crop Sci. 2010, 4, 175–179. [Google Scholar]
- Wang, J.; Chen, Y.; Feng, W.; Yu, H.; Huang, M.; Yang, Q. Transfer learning with dynamic distribution adaptation. ACM Trans. Intell. Syst. Technol. 2019, 11, 1–25. [Google Scholar] [CrossRef]
- Li, C.G.; Zhang, B.; Zhao, Q.; Cheng, X.P.; WANG, X.F. Empathy prediction from texts based on transfer learning. J. Comput. Appl. 2022, 42, 3603–3609. (In Chinese) [Google Scholar]
- Zhu, W.; Braun, B.; Chiang, L.H.; Romagnoli, J.A. Investigation of transfer learning for image classification and impact on training sample size. Chemom. Intell. Lab. 2021, 211, 104269. [Google Scholar] [CrossRef]
- Steduto, P.; Albrizio, R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agric. For. Meteorol. 2005, 130, 269–281. [Google Scholar] [CrossRef]
- Han, W.T.; Tang, J.D.; Zhang, L.Y.; Niu, Y.X.; Wang, T.H. Maize water use efficiency and biomass estimation based on unmanned aerial vehicle remote sensing. Trans. CSAM 2021, 52, 129–141. (In Chinese) [Google Scholar]
- Xu, W.K.; Zhao, L.G.; Li, J.; Shang, X.P.; Ding, X.P.; Wang, T.W. Detection and classification of tea buds based on deep learning. Comput. Electron. Agric. 2022, 192, 106547. [Google Scholar] [CrossRef]
Center Wavelength (nm) | Conversion Formulas | R2 |
---|---|---|
450 | 0.995 | |
550 | 0.995 | |
685 | 0.999 | |
725 | 0.999 | |
780 | 0.999 |
Model Dataset | R2 | RMSE | RPD | Model Datasheet | R2 | RMSE | RPD |
---|---|---|---|---|---|---|---|
N0_Traning dataset | 0.49 | 466.91 | 1.95 | N24_Traning dataset | 0.88 | 1304.16 | 3.04 |
N6_Test dataset | / | 5339.59 | 0.61 | N0_test dataset | / | 4922.29 | 0.57 |
N12_Test dataset | / | 9370.43 | 0.53 | N6_Test dataset | / | 4400.67 | 0.92 |
N18_Test dataset | / | 12,755.63 | 0.53 | N12_Tset dataset | 0.70 | 1402.77 | 1.97 |
N24_Test dataset | / | 13,917.14 | 0.53 | N18_Test dataset | 0.90 | 1053.85 | 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; He, J.; Zhang, H.; Shi, Z.; Wei, P.; Jing, Y.; Yang, X.; Zhang, Y.; Wang, L.; Zheng, G. Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images. Agriculture 2024, 14, 378. https://doi.org/10.3390/agriculture14030378
Guo Y, He J, Zhang H, Shi Z, Wei P, Jing Y, Yang X, Zhang Y, Wang L, Zheng G. Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images. Agriculture. 2024; 14(3):378. https://doi.org/10.3390/agriculture14030378
Chicago/Turabian StyleGuo, Yan, Jia He, Huifang Zhang, Zhou Shi, Panpan Wei, Yuhang Jing, Xiuzhong Yang, Yan Zhang, Laigang Wang, and Guoqing Zheng. 2024. "Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images" Agriculture 14, no. 3: 378. https://doi.org/10.3390/agriculture14030378
APA StyleGuo, Y., He, J., Zhang, H., Shi, Z., Wei, P., Jing, Y., Yang, X., Zhang, Y., Wang, L., & Zheng, G. (2024). Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images. Agriculture, 14(3), 378. https://doi.org/10.3390/agriculture14030378