Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Canopy-Spectral Data Acquisition
2.2. Data Analysis Methods
2.2.1. Investigation of Peanut Southern Blight Severity
2.2.2. Fractional-Order Differential
2.2.3. 1D-CNN
2.2.4. SMOTE Algorithm
2.2.5. ReliefF Arithmetic
2.2.6. SVM and KNN Models
2.3. Model Accuracy Evaluation Metrics
3. Results
3.1. Synthetic Data Generation
3.2. Features of Spectral Curves under Different Fractional Differentiation Orders
3.3. Correlation between Disease Severity and Spectra
3.4. ReliefF Feature Selection Algorithm
3.5. Construction of Disease Detection Model Based on FOD Spectra
3.5.1. Performance of Multiple Outputs in the 1D-CNN Model
3.5.2. Performance of Machine Learning Models with Multiple Outputs
3.5.3. Evaluation of Model Generalization Performance
4. Discussion
4.1. SMOTE Analysis of Synthetic Data
4.2. Analysis of Various Orders of FOD
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Kabana, R.; Kloepper, J.; Robertson, D.; Wells, L. Velvetbean for the management of root-knot and southern blight in peanut. Nematropica 1992, 22, 75–80. [Google Scholar]
- Xu, M.; Zhang, X.; Yu, J.; Guo, Z.; Wu, J.; Li, X.; Chi, Y.; Wan, S. Biological control of peanut southern blight (Sclerotium rolfsii) by the strain Bacillus pumilus LX11. Biocontrol Sci. Technol. 2020, 30, 485–489. [Google Scholar] [CrossRef]
- Ryley, M.; Kyei, N.; Tatnell, J. Evaluation of fungicides for the management of sclerotinia blight of peanut. Aust. J. Agric. Res. 2000, 51, 917–924. [Google Scholar] [CrossRef]
- Asuyama, H.; Yamanaka, S. Stem rot of peanut. Jpn. J. Phytopathol. 1953, 18, 28–32. [Google Scholar] [CrossRef]
- Jenkins, W.A. Two fungi causing leaf spot of peanut. J. Agric. Res. 1938, 56, 317–332. [Google Scholar]
- Grichar, W.J.; Woodward, J.E. Fungicides and application timing for control of early leafspot, southern blight, and sclerotinia blight of peanut. Int. J. Agron. 2016, 2016, 1848723. [Google Scholar] [CrossRef]
- Damicone, J.P. Soilborne Blight Diseases of Peanut; Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2014. [Google Scholar]
- Melouk, H.; Hunger, R.M.; Mulder, P.G.; Payton, M.E.; Zhang, H. Characterization of Isolates of Sclerotium rolfsii and Evaluation of Peanut for Reaction to Southern Blight; Oklahoma State University: Stillwater, OK, USA, 2003. [Google Scholar]
- Jia, Z.; Ou, C.; Sun, S.; Wang, J.; Liu, J.; Li, M.; Jia, S.; Mao, P. A novel approach using multispectral imaging for rapid development of seed pellet formulations to mitigate drought stress in alfalfa. Comput. Electron. Agric. 2023, 212, 108136. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z.; Liu, X.; Ustin, S.L. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 295–310. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
- Alonso, M.C.; Malpica, J.A.; de Agirre, A.M. Consequences of the Hughes phenomenon on some classification techniques. In Proceedings of the ASPRS 2001 Annual Conference, St. Louis, MO, USA, 23–27 April 2001; pp. 1–5. [Google Scholar]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, D.; Nie, T.; Kou, Y. A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data. J. Biomed. Inform. 2020, 107, 103465. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, J.; Liu, J. NNI-SMOTE-XGBoost: A Novel Small Sample Analysis Method for Properties Prediction of Polymer Materials. Macromol. Theory Simul. 2021, 30, 2100010. [Google Scholar] [CrossRef]
- Kumar, N.S.; Rao, K.N.; Govardhan, A.; Reddy, K.S.; Mahmood, A.M. Undersampled K-means approach for handling imbalanced distributed data. Prog. Artif. Intell. 2014, 3, 29–38. [Google Scholar] [CrossRef]
- Van Hulse, J.; Khoshgoftaar, T.M.; Napolitano, A. An empirical comparison of repetitive undersampling techniques. In Proceedings of the 2009 IEEE International Conference on Information Reuse & Integration, Las Vegas, NV, USA, 10–12 August 2009; pp. 29–34. [Google Scholar]
- Sun, P.; Wang, Z.; Jia, L.; Xu, Z. SMOTE-kTLNN: A hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier. Expert Syst. Appl. 2024, 238, 121848. [Google Scholar] [CrossRef]
- Deng, M.; Guo, Y.; Wang, C.; Wu, F. An oversampling method for multi-class imbalanced data based on composite weights. PLoS ONE 2021, 16, e0259227. [Google Scholar] [CrossRef]
- Karabulut, E.M.; Ibrikci, T. Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. J. Med. Syst. 2014, 38, 50. [Google Scholar] [CrossRef]
- Özdemir, A.; Polat, K.; Alhudhaif, A. Classification of imbalanced hyperspectral images using SMOTE-based deep learning methods. Expert Syst. Appl. 2021, 178, 114986. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Yang, X.; Song, X.; Xu, B.; Li, Z.; Wu, J.; Yang, H.; Wu, J. An explainable XGBoost model improved by SMOTE-ENN technique for maize lodging detection based on multi-source unmanned aerial vehicle images. Comput. Electron. Agric. 2022, 194, 106804. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, H.; Wang, J.; Chen, L.; Du, H.; Zhou, G. Early detection of pine shoot beetle attack using vertical profile of plant traits through UAV-based hyperspectral, thermal, and lidar data fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103549. [Google Scholar] [CrossRef]
- Hart, S.J.; Veblen, T.T. Detection of spruce beetle-induced tree mortality using high-and medium-resolution remotely sensed imagery. Remote Sens. Environ. 2015, 168, 134–145. [Google Scholar] [CrossRef]
- Tian, L.; Wang, Z.; Xue, B.; Li, D.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space. Remote Sens. Environ. 2023, 285, 113384. [Google Scholar] [CrossRef]
- Sapes, G.; Lapadat, C.; Schweiger, A.K.; Juzwik, J.; Montgomery, R.; Gholizadeh, H.; Townsend, P.A.; Gamon, J.A.; Cavender-Bares, J. Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination. Remote Sens. Environ. 2022, 273, 112961. [Google Scholar] [CrossRef]
- Guo, W.; Sun, H.; Qiao, H.; Zhang, H.; Zhou, L.; Dong, P.; Song, X. Spectral Detection of Peanut Southern Blight Severity Based on Continuous Wavelet Transform and Machine Learning. Agriculture 2023, 13, 1504. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar]
- Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the detectability of European spruce bark beetle green attack in multispectral drone images with high spatial-and temporal resolutions. Remote Sens. Environ. 2023, 287, 113484. [Google Scholar] [CrossRef]
- Stone, C.; Mohammed, C. Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: A review. Curr. For. Rep. 2017, 3, 75–92. [Google Scholar] [CrossRef]
- Moghadam, P.; Ward, D.; Goan, E.; Jayawardena, S.; Sikka, P.; Hernandez, E. Plant disease detection using hyperspectral imaging. In Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 29 November–1 December 2017; pp. 1–8. [Google Scholar]
- Tarafdar, A.; Rani, T.S.; Chandran, U.S.; Ghosh, R.; Chobe, D.R.; Sharma, M. Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front. Plant Sci. 2018, 9, 1154. [Google Scholar] [CrossRef] [PubMed]
- Garhwal, A.S.; Pullanagari, R.R.; Li, M.; Reis, M.M.; Archer, R. Hyperspectral imaging for identification of Zebra Chip disease in potatoes. Biosyst. Eng. 2020, 197, 306–317. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Huang, Y.; Tian, Y.; Yuan, L. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis. Comput. Electron. Agric. 2022, 193, 106717. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Chen, D.; Zheng, W.; Ma, Y.; Pan, X. Simultaneous estimation of multiple soil properties under moist conditions using fractional-order derivative of vis-NIR spectra and deep learning. Geoderma 2023, 438, 116653. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, X.; Song, X.; Zhang, T.; Duan, W.; Su, J. Hyperspectral estimation of wheat stripe rust using fractional order differential equations and Gaussian process methods. Comput. Electron. Agric. 2023, 206, 107671. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q.; Jin, J. Estimation of leaf photosynthetic capacity parameters using spectral indices developed from fractional-order derivatives. Comput. Electron. Agric. 2023, 212, 108068. [Google Scholar] [CrossRef]
- Ren, K.; Dong, Y.; Huang, W.; Guo, A.; Jing, X. Monitoring of winter wheat stripe rust by collaborating canopy SIF with wavelet energy coefficients. Comput. Electron. Agric. 2023, 215, 108366. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Learnware: On the future of machine learning. Front. Comput. Sci. 2016, 10, 589–590. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, X.; Xiong, J.; Yu, R.; Liu, T.; Jiang, Y.; Yang, G. Estimation of nitrogen content on apple tree canopy through red-edge parameters from fractional-order differential operators using hyperspectral reflectance. J. Indian Soc. Remote Sens. 2021, 49, 377–392. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, C.; Ding, F.; Li, Y.; Chen, W.; Li, J.; Xiao, Z. Hyperspectral estimation of winter wheat leaf area index based on continuous wavelet transform and fractional order differentiation. Sensors 2021, 21, 8497. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Spolaôr, N.; Cherman, E.A.; Monard, M.C.; Lee, H.D. ReliefF for multi-label feature selection. In Proceedings of the 2013 Brazilian Conference on Intelligent Systems, Fortaleza, Brazil, 19–24 October 2013; pp. 6–11. [Google Scholar]
- Joachims, T. Making Large-Scale SVM Learning Practical. Tech. Rep. 1998, 8, 499–526. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1774–1785. [Google Scholar] [CrossRef]
- Branch, W.; Brenneman, T. Stem rot disease evaluation of mass-selected peanut populations. Crop Prot. 1999, 18, 127–130. [Google Scholar] [CrossRef]
- Subrahmanyam, P.; Rao, V.R.; McDonald, D.; Moss, J.; Gibbons, R. Origins of resistances to rust and late leaf spot in peanut (Arachis hypogaea, Fabaceae). Econ. Bot. 1989, 43, 444–455. [Google Scholar] [CrossRef]
- Flores-Moctezuma, H.; Montes-Belmont, R.; Jimenez-Perez, A.; Nava-Juarez, R. Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Prot. 2006, 25, 195–201. [Google Scholar] [CrossRef]
- Lane, P.C.; Clarke, D.; Hender, P. On developing robust models for favourability analysis: Model choice, feature sets and imbalanced data. Decis. Support Syst. 2012, 53, 712–718. [Google Scholar] [CrossRef]
- Weiss, G.M. Mining with rarity: A unifying framework. ACM Sigkdd Explor. Newsl. 2004, 6, 7–19. [Google Scholar] [CrossRef]
- Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [Google Scholar] [CrossRef]
- Sivakumar, J.; Ramamurthy, K.; Radhakrishnan, M.; Won, D. Synthetic sampling from small datasets: A modified mega-trend diffusion approach using k-nearest neighbors. Knowl.-Based Syst. 2022, 236, 107687. [Google Scholar] [CrossRef]
- Jiang, Z.; Pan, T.; Zhang, C.; Yang, J. A new oversampling method based on the classification contribution degree. Symmetry 2021, 13, 194. [Google Scholar] [CrossRef]
- Tarawneh, A.S.; Hassanat, A.B.; Altarawneh, G.A.; Almuhaimeed, A. Stop oversampling for class imbalance learning: A review. IEEE Access 2022, 10, 47643–47660. [Google Scholar] [CrossRef]
- Schultz, K.; Bej, S.; Hahn, W.; Wolfien, M.; Srivastava, P.; Wolkenhauer, O. ConvGeN: A convex space learning approach for deep-generative oversampling and imbalanced classification of small tabular datasets. Pattern Recognit. 2024, 147, 110138. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Wang, Y.; Zhang, Z. Utilization of synthetic minority oversampling technique for improving potato yield prediction using remote sensing data and machine learning algorithms with small sample size of yield data. ISPRS J. Photogramm. Remote Sens. 2023, 201, 12–25. [Google Scholar] [CrossRef]
- Peng, J.; Gao, R.; Thng, S.; Huang, W.; Lin, Z. Classification of Non-tumorous Facial Pigmentation Disorders Using Generative Adversarial Networks and Improved SMOTE. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 3770–3773. [Google Scholar]
- Sáez, J.A.; Luengo, J.; Stefanowski, J.; Herrera, F. SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf. Sci. 2015, 291, 184–203. [Google Scholar] [CrossRef]
- Zhang, A.; Yu, H.; Huan, Z.; Yang, X.; Zheng, S.; Gao, S. SMOTE-RkNN: A hybrid re-sampling method based on SMOTE and reverse k-nearest neighbors. Inf. Sci. 2022, 595, 70–88. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, J.; Li, W.; Wang, Y.; Jiang, J.; Cheng, T.; Zhu, Y.; Cao, W.; Yao, X. Estimation of canopy water content for wheat through combining radiative transfer model and machine learning. Field Crops Res. 2023, 302, 109077. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Zhang, D.; Zhang, F. Application of fractional differential in preprocessing hyperspectral data of saline soil. Trans. Chin. Soc. Agric. Eng. 2014, 30, 151–160. [Google Scholar]
- Duan, R.; Huang, G.; Zhou, X.; Lu, C.; Tian, C. Record-Breaking heavy rainfall around Henan Province in 2021 and future projection of extreme conditions under climate change. J. Hydrol. 2023, 625, 130102. [Google Scholar] [CrossRef]
Stratification | Type | Output Features | Weight |
---|---|---|---|
1 | Input Layer | 37 × 1 × 1 | - |
2 | Convolutional Laye | 37 × 1 × 8 | 2 × 1 × 1 × 8 |
3 | Batch Normalization Layer | 37 × 1 × 8 | 1 × 1 × 8 |
4 | ReLU | 37 × 1 × 8 | - |
5 | Max Pooling Layer | 18 × 1 × 8 | - |
6 | Convolutional Layer | 18 × 1 × 16 | 2 × 1 × 8 × 16 |
7 | Batch Normalization | 18 × 1 × 16 | 1 × 1 × 16 |
8 | ReLU | 18 × 1 × 16 | - |
9 | Fully Connected Layer | 1 × 1 × 4 | 4 × 288 |
10 | Softmax | 1 × 1 × 4 | - |
11 | Output Layer | 1 × 1 × 4 | - |
K = 1 | K = 2 | K = 3 | ||||
---|---|---|---|---|---|---|
FOD Order | OA | Kappa | OA | Kappa | OA | Kappa |
0 | 86.78% | 0.82 | 87.29% | 0.83 | 87.12% | 0.83 |
0.1 | 86.10% | 0.81 | 86.10% | 0.81 | 85.93% | 0.81 |
0.2 | 88.81% | 0.85 | 85.76% | 0.81 | 87.46% | 0.83 |
0.3 | 87.46% | 0.83 | 87.12% | 0.83 | 86.44% | 0.82 |
0.4 | 86.44% | 0.82 | 86.95% | 0.82 | 85.93% | 0.81 |
0.5 | 86.61% | 0.82 | 86.27% | 0.81 | 86.44% | 0.82 |
0.6 | 86.78% | 0.82 | 86.44% | 0.82 | 85.93% | 0.81 |
0.7 | 86.44% | 0.82 | 84.41% | 0.79 | 86.95% | 0.82 |
0.8 | 85.42% | 0.8 | 84.24% | 0.79 | 82.71% | 0.77 |
0.9 | 85.25% | 0.8 | 83.05% | 0.77 | 83.56% | 0.78 |
1.0 | 84.07% | 0.79 | 82.03% | 0.76 | 83.22% | 0.77 |
1.1 | 83.90% | 0.78 | 85.08% | 0.8 | 83.73% | 0.78 |
1.2 | 83.22% | 0.77 | 82.37% | 0.76 | 82.71% | 0.77 |
1.3 | 84.07% | 0.79 | 83.22% | 0.77 | 84.41% | 0.79 |
1.4 | 83.39% | 0.78 | 81.69% | 0.75 | 81.02% | 0.74 |
1.5 | 82.54% | 0.77 | 81.36% | 0.75 | 83.56% | 0.78 |
1.6 | 82.20% | 0.76 | 80.00% | 0.73 | 81.02% | 0.74 |
1.7 | 79.83% | 0.73 | 80.51% | 0.73 | 80.17% | 0.73 |
1.8 | 77.29% | 0.69 | 77.29% | 0.69 | 75.25% | 0.66 |
1.9 | 74.07% | 0.65 | 71.86% | 0.61 | 72.03% | 0.62 |
2 | 73.73% | 0.64 | 70.85% | 0.6 | 71.69% | 0.62 |
Model (K = 1) | ||||
---|---|---|---|---|
FOD Order | SVM | KNN | ||
OA (%) | Kappa | OA (%) | Kappa | |
0 | 72.20% | 0.63 | 84.75% | 0.80 |
0.1 | 70.34% | 0.60 | 84.24% | 0.79 |
0.2 | 84.07% | 0.79 | 86.95% | 0.83 |
0.3 | 86.61% | 0.82 | 85.76% | 0.81 |
0.4 | 83.90% | 0.78 | 80.68% | 0.74 |
0.5 | 79.32% | 0.72 | 75.76% | 0.68 |
0.6 | 74.41% | 0.66 | 71.53% | 0.62 |
0.7 | 75.59% | 0.68 | 72.88% | 0.64 |
0.8 | 75.42% | 0.67 | 72.20% | 0.63 |
0.9 | 77.29% | 0.69 | 72.54% | 0.63 |
1.0 | 78.64% | 0.71 | 70.68% | 0.60 |
1.1 | 77.46% | 0.70 | 73.22% | 0.64 |
1.2 | 76.10% | 0.68 | 73.73% | 0.65 |
1.3 | 75.93% | 0.68 | 71.53% | 0.61 |
1.4 | 74.92% | 0.66 | 67.46% | 0.55 |
1.5 | 72.37% | 0.63 | 64.24% | 0.51 |
1.6 | 70.68% | 0.60 | 59.83% | 0.46 |
1.7 | 67.12% | 0.55 | 54.24% | 0.38 |
1.8 | 63.22% | 0.49 | 51.53% | 0.35 |
1.9 | 60.00% | 0.45 | 49.83% | 0.33 |
2 | 57.80% | 0.42 | 49.83% | 0.32 |
Model Input Parameters | Model | Calibration | Validation | ||
---|---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | ||
K = 1, n = 10, FOD = 0.2 | 1D-CNN | 88.81% | 0.85 | 82.76% | 0.75 |
SVM | 84.07% | 0.79 | 48.28% | 0.27 | |
KNN | 86.95% | 0.83 | 65.52% | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Zhou, L.; Shu, M.; Zhang, J.; Feng, Z.; Feng, H.; Song, X.; Yue, J.; Guo, W. Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation. Agriculture 2024, 14, 476. https://doi.org/10.3390/agriculture14030476
Sun H, Zhou L, Shu M, Zhang J, Feng Z, Feng H, Song X, Yue J, Guo W. Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation. Agriculture. 2024; 14(3):476. https://doi.org/10.3390/agriculture14030476
Chicago/Turabian StyleSun, Heguang, Lin Zhou, Meiyan Shu, Jie Zhang, Ziheng Feng, Haikuan Feng, Xiaoyu Song, Jibo Yue, and Wei Guo. 2024. "Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation" Agriculture 14, no. 3: 476. https://doi.org/10.3390/agriculture14030476
APA StyleSun, H., Zhou, L., Shu, M., Zhang, J., Feng, Z., Feng, H., Song, X., Yue, J., & Guo, W. (2024). Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation. Agriculture, 14(3), 476. https://doi.org/10.3390/agriculture14030476